![江苏省泰州市三中学教育联盟2025届九上数学开学考试模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16284929/0-1729726003193/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省泰州市三中学教育联盟2025届九上数学开学考试模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16284929/0-1729726003241/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省泰州市三中学教育联盟2025届九上数学开学考试模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16284929/0-1729726003266/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省泰州市三中学教育联盟2025届九上数学开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若与互为相反数,则
A.B.C.D.
2、(4分)如图,正方形和正方形中,点在上,,,是的中点,那么的长是( )
A.2B.C.D.
3、(4分)如图,平行四边形ABCD对角线AC、BD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是( )
A.平行四边形→矩形→平行四边形→菱形→平行四边形
B.平行四边形→矩形→平行四边形→正方形→平行四边形
C.平行四边形→菱形→平行四边形→矩形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形
4、(4分)为了解某公司员工的年工资情况,小明随机调查了10位员工,其年工资如下单位:万元:4,4,4,5,6,6,7,7,9,则下列统计量中,能合理反映该公司员工年工资中等水平的是
A.平均数B.中位数C.众数D.方差
5、(4分)为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1名考生的成绩进行统计.下列说法:
①这50000名学生的数学考试成绩的全体是总体;
②每个考生是个体;
③1名考生是总体的一个样本;
④样本容量是1.
其中说法正确的有( )
A.4个B.3个C.2个D.1个
6、(4分)已知二次函数(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为( )
A.或1B.或1C.或D.或
7、(4分)如图,菱形ABCD中,AB=4,E,F分别是AB、BC的中点,P是AC上一动点,则PF+PE的最小值是( )
A.3B.C.4D.
8、(4分) 小马虎在下面的计算中只作对了一道题,他做对的题目是( )
A.B.a3÷a=a2
C.D.=﹣1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)根据图中的程序,当输入x=2时,输出结果y=________.
10、(4分)已知关于x的一次函数y=(3a-7)x+a-2的图像与y轴的交点在x轴的上方,且y随x的增大而减小,则a的取值范围为__________.
11、(4分)如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.
12、(4分)化简:=__________.
13、(4分)用换元法解方程+3=0时,如果设=y,那么将原方程变形后所得的一元二次方程是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,过点、分别作轴的垂线,垂足分别为、.
(1)求直线和直线的解析式;
(2)点为直线上的一个动点,过作轴的垂线交直线于点,是否存在这样的点,使得以、、、为顶点的四边形为平行四边形?若存在,求此时点的横坐标;若不存在,请说明理由;
(3)若沿方向平移(点在线段上,且不与点重合),在平移的过程中,设平移距离为,与重叠部分的面积记为,试求与的函数关系式.
15、(8分)在▱ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F.
(1)如图①,证明:BE=BF.
(2)如图②,若∠ADC=90°,O为AC的中点,G为EF的中点,试探究OG与AC的位置关系,并说明理由.
(3)如图③,若∠ADC=60°,过点E作DC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EK=BF,连接CK,H为CK的中点,试探究线段OH与HA之间的数量关系,并对结论给予证明.
16、(8分)如图,在4×3正方形网格中,每个小正方形的边长都是1.
(1)分别求出线段AB,CD的长度;
(2)在图中画线段EF,使得EF的长为,以AB,CD,EF三条线段能否构成直角三角形,并说明理由.
17、(10分)计算:
(1) (2)(4)÷2
18、(10分)如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为A(-2,4)、B(-2,0)、C(-4,1),结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC关于原点O中心对称图形△A1B1C1.
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:
根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择__________.
20、(4分)如图是小明统计同学的年龄后绘制的频数直方图,该班学生的平均年龄是__________岁.
21、(4分)已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:_____,使得四边形BCDE成为菱形.
22、(4分)(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.
23、(4分)如图,折叠矩形纸片ABCD,使点B落在边AD上,折痕EF的两端分别在AB、BC上(含端点),且AB=6cm,BC=10cm.则折痕EF的最大值是 cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形ABCD,AB=4,点M是边BC的中点,点E是边AB上的一个动点,作EG⊥AM交AM于点G,EG的延长线交线段CD于点F.
(1)如图①,当点E与点B重合时,求证:BM=CF;
(2)设BE=x,梯形AEFD的面积为y,求y与x的函数解析式,并写出定义域.
25、(10分)在的正方形网格中(每个小正方形的边长为1),线段在网格中位置如图.
(1)______;
(2)请画出一个,其中在格点上,且三边均为无理数;
(3)画出一个以为边,另两个顶点、也在格点上的菱形,其面积是______.
26、(12分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF
(1)补充完成图形;
(2)若EF∥CD,求证:∠BDC=90°.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据根式的性质和绝对值的性质,要使与互为相反数,则可得和,因此可计算的的值.
【详解】
根据根式的性质和绝对值的性质可得:
因此解得
所以可得
故选A.
本题主要考查根式和绝对值的性质,关键在于根式要大于等于零,绝对值要大于等于零.
2、D
【解析】
连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
如图,连接AC、CF,
∵正方形ABCD和正方形CEFG中,BC=1,CE=3,
∴AC=,CF=,∠ACD=∠GCF=45°,
∴∠ACF=90°,由勾股定理得,,
∵H是AF的中点,∴CH=AF=×=.
故选D.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.
3、C
【解析】
先判断出点E在移动过程中,四边形AECF始终是平行四边形,当∠AFC=80°时,四边形AECF是菱形,当∠AFC=90°时,四边形AECF是矩形,即可求解.
【详解】
解:∵点O是平行四边形ABCD的对角线得交点,
∴OA=OC,AD∥BC,
∴∠ACF=∠CAD,∠ADB=∠DBC=20°
∵∠COF=∠AOE,OA=OC,∠DAC=∠ACF
∴△AOE≌△COF(ASA),
∴AE=CF,
∵AE∥CF,
∴四边形AECF是平行四边形,
∵∠ADB=∠DBC=20°,∠ACB=50°,
∴∠AFC>20°
当∠AFC=80°时,∠FAC=180°-80°-50°=50°
∴∠FAC=∠ACB=50°
∴AF=FC
∴平行四边形AECF是菱形
当∠AFC=90°时,平行四边形AECF是矩形
∴综上述,当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是:平行四边形→菱形→平行四边形→矩形→平行四边形.
故选:C.
本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力,题目比较好,难度适中.
4、B
【解析】
根据题意,结合员工工资情况,从统计量的角度分析可得答案.
【详解】
根据题意,了解这家公司的员工的工资的中等水平,
结合员工情况表,即要全面的了解大多数员工的工资水平,
故最应该关注的数据的中位数,
故选:B.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
5、C
【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
①这50000名学生的数学考试成绩的全体是总体,说法正确;
②每个考生是个体,说法错误,应该是每个考生的数学成绩是个体;
③1名考生是总体的一个样本,说法错误,应是1名考生的数学成绩是总体的一个样本;
④样本容量是1,说法正确;
正确的说法共2个.
故选C.
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
6、A
【解析】
首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.
【详解】
依题意知a>0,>0,a+b﹣2=0,
故b>0,且b=2﹣a,
a﹣b=a﹣(2﹣a)=2a﹣2,
于是0<a<2,
∴﹣2<2a﹣2<2,
又a﹣b为整数,
∴2a﹣2=﹣1,0,1,
故a=,1,,
b=,1,,
∴ab=或1,故选A.
根据开口和对称轴可以得到b的范围.按照左同右异规则.当对称轴在y轴的左侧,则a,b符号相同,在右侧则a,b符号相反.
7、C
【解析】
作点E关于AC的对称点E',连接E'F与AC交点为P点,此时EP+PF的值最小;易求E'是AD的中点,证得四边形ABF E'是平行四边形,所以E'F=AB=4,即PF+PE的最小值是4.
【详解】
作点E关于AC的对称点E',连接E'F,与AC交点为P点,此时EP+PF的值最小;
连接EF,
∵菱形ABCD,
∴AC⊥BD
∵E,F分别是边AB,BC的中点,
∴E'是AD的中点,
∴A E'=AD,BF=BC,E'E⊥EF,
∵菱形ABCD,
∴AD=BC,AD∥BC,
∴A E'=BF,A E'∥BF,
∴四边形ABF E'是平行四边形,
∴E'F=AB=4,
即PF+PE的最小值是4.
故选C.
本题考查的是轴对称-最短路线问题及菱形的性质,通过轴对称作点E关于AC的对称点是解题的关键.
8、B
【解析】
A.;
B.;
C.;
D..
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
∵x=2时,符合x>1的条件,
∴将x=2代入函数y=−x+4得:y=2.
故答案为2.
10、2<a<.
【解析】
分析:根据已知函数的增减性判定3a-7<1,由该函数图象与y轴交点的位置可得a-2>1.
详解:∵关于x一次函数y=(3a-7)x+a-2的图象与y轴的交点在x轴的上方,且y随着x的增大而减少,
∴,
解得2<a<.
故答案是:2<a<.
点睛:考查了一次函数图象与系数的关系.一次函数y=kx-b(k≠1):函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;
一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.
11、1﹣1
【解析】
取OD的中点G,过G作GP⊥AD于P,连接HG,AG,依据∠ADB=30°,可得PGDG=1,依据∠DHO=90°,可得点H在以OD为直径的⊙G上,再根据AH+HG≥AG,即可得到当点A,H,G三点共线,且点H在线段AG上时,AH最短,根据勾股定理求得AG的长,即可得出AH的最小值.
【详解】
如图,取OD的中点G,过G作GP⊥AD于P,连接HG,AG.
∵AB=4,BC=4AD,∴BD8,∴BD=1AB,DO=4,HG=1,∴∠ADB=30°,∴PGDG=1,∴PD,AP=3.
∵DH⊥OF,∴∠DHO=90°,∴点H在以OD为直径的⊙G上.
∵AH+HG≥AG,∴当点A,H,G三点共线,且点H在线段AG上时,AH最短,此时,Rt△APG中,AG,∴AH=AG﹣HG=11,即AH的最小值为11.
故答案为11.
本题考查了圆和矩形的性质,勾股定理的综合运用,解决问题的关键是根据∠DHO=90°,得出点H在以OD为直径的⊙G上.
12、2x
【解析】
根据分式的除法法则进行计算即可.
【详解】
故答案为:.
本题考查了分式除法运算,掌握分式的除法法则是解题的关键.
13、3y2+3y﹣2=1
【解析】
设,则原方程化为3y﹣+3=1,,再整理即可.
【详解】
﹣+3=1,
设=y,则原方程化为:3y﹣+3=1,
即3y2+3y﹣2=1,
故答案为:3y2+3y﹣2=1.
本题考查了解分式方程,能够正确换元是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y=-x+1,y=x;(2)m=或;(3)S=.
【解析】
(1)理由待定系数法即可解决问题;
(2)如图1中,设M(m,),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-|=3,解方程即可;
(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=OF•FQ-OE•PG计算即可.
【详解】
解:(1)设直线CD的解析式为y=kx+b,则有,解得,
∴直线CD的解析式为y=-x+1.
设直线OD的解析式为y=mx,则有3m=1,m=,
∴直线OD的解析式为y=x.
(2)存在.
理由:如图1中,设M(m,),则N(m,-m+1).
当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,
∴|-m+1-|=3,
解得m=或.
(3)如图2中,设平移中的三角形为△A′O′C′,点C′在线段CD上.
设O′C′与x轴交于点E,与直线OD交于点P;
设A′C′与x轴交于点F,与直线OD交于点Q.
因为平移距离为t,所以水平方向的平移距离为t(0≤t<2),
则图中AF=t,F(1+t,0),Q(1+t,),C′(1+t,3-t).
设直线O′C′的解析式为y=3x+b,
将C′(1+t,3-t)代入得:b=-1t,
∴直线O′C′的解析式为y=3x-1t.
∴E(,0).
联立y=3x-1t与y=,解得x=.
∴S=S△OFQ-S△OEP=OF•FQ-OE•PG
=(1+t)()-
=.
本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.
15、(1)详见解析;(2)GO⊥AC;(3)AH=OH
【解析】
(1)根据平行线的性质得出∠E=∠ADF,∠EFB=∠EDC,再利用ED平分∠ADC,即可解答
(2)连接BG,AG,根据题意得出四边形ABCD是矩形,再利用矩形的性质,证明△ABG≌△CEG,即可解答
(3)连接AK,BK,FK,先得出四边形BFKE是菱形,,再利用菱形的性质证明△KBE,△KBF都是等边三角形,再利用等边三角形的性质得出△ABK≌△CEK,最后利用三角函数即可解答
【详解】
(1)证明:如图①中,因为四边形ABCD为平行四边形,
所以,AD∥EC,AB∥CD,
所以,∠E=∠ADF,∠EFB=∠EDC,
因为ED平分∠ADC,
所以,∠ADF=∠EDC,
所以,∠E=∠EFB,
所以,BE=BF
(2)解:如图⊙中,结论:GO⊥AC
连接BG,AG
∵四边形ABCD是平行四边形,∠ADC=90°,
四边形ABCD是矩形,
∠ABC=∠ABE=90°,
由(1)可知:BE=BF,
∵∠EBF=90°,EG=FG,
∴∠E=45°,∠GBF=∠GBE=45°,BG=GE=GF,
∵∠DCE=90°
∴∠E=∠EDC=45°,
∴DC=CE=BA,
∵∠ABG=∠E=45°,AB=EC,BG=EG,
∴△ABG≌△CEG(SAS),
∵GA=GC
∴AO=OC.
∴GO⊥AC
(3)解:如图⊙中,连接AK,BK,FK
∵BF=EK,BF∥EK,
∴四边形BFKE是平行四边形,
∵BF=BE,
∴四边形BFKE是菱形,
∵边形ABCD是平行四边形,
∴∠ADC=∠ABC=60°,∠DCB=∠DAB=120°
∴∠EBF=120°,
∴∠KBE=∠KBF=60°
BF=BE=FK=EK,
∴△KBE,△KBF都是等边三角形,
∴∠ABK=∠CEK=60°,∠FEB=∠FEK=30
∴∠CDE=∠CED=30°
∴CD=CE=BA,
∵BK=EK,
∴△ABK≌△CEK(SAS)
∴AK=CK,∠AKB=∠CKB
∴∠AKC=∠BKE=60°
∴△ACK是等边三角形
∵OA=OC,CH=HK
∴AK=2OH,AH⊥CK,
∴AH=AK·cs30°= AK
∴AH= OH.
此题考查平行四边形的性质,矩形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,解题关键在于作辅助线
16、;.(2)以AB、CD、EF三条线段可以组成直角三角形
【解析】
(1)利用勾股定理求出AB、CD的长即可;
(2)根据勾股定理的逆定理,即可作出判断.
【详解】
(1)AB==;CD==2.
(2)如图,EF==,
∵CD2+EF2=8+5=13,AB2=13,∴CD2+EF2=AB2,∴以AB、CD、EF三条线段可以组成直角三角形.
本题考查了勾股定理、勾股定理的逆定理,充分利用网格是解题的关键.
17、(1)4+5(2)2+2
【解析】
(1)先进行乘法运算,然后把化简后合并即可.
(2)运用实数运算、二次根式化简,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
(1)原式=
(2)
此题考查二次根式的混合运算,实数运算、二次根式化简,掌握运算法则是解题关键
18、 (1)见解析;(2)图形见解析,点B2、C2的坐标分别为(0,-2),(-2,-1)
【解析】
(1)先作出点A、B、C关于原点的对称点,A1,B1,C1,顺次连接各点即可;
(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2,由点B2、C2在坐标系中的位置得出各点坐标即可.
【详解】
(1)△ABC关于原点O对称的△A1B1C1如图所示:
(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1).
本题考查了作图﹣旋转变换,熟知图形旋转的性质是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、丙
【解析】
由表中数据可知,丙的平均成绩和甲的平均成绩最高,而丙的方差也是最小的,成绩最稳定,所以应该选择:丙.
故答案为丙.
20、
【解析】
利用总年龄除以总人数即可得解.
【详解】
解:由题意可得该班学生的平均年龄为 .
故答案为:14.4.
本题主要考查频数直方图,解此题的关键在于准确理解频数直方图中所表达的信息.
21、AB=2BC.
【解析】
先由已知条件得出CD=BE,证出四边形BCDE是平行四边形,再证出BE=BC,根据邻边相等的平行四边形是菱形可得四边形BCDE是菱形.
【详解】
解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:
∵DC=AB,E为AB的中点,
∴CD=BE=AE.
又∵DC∥AB,
∴四边形BCDE是平行四边形,
∵AB=2BC,
∴BE=BC,
∴四边形BCDE是菱形.
故答案为:AB=2BC.
本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.
22、4或﹣1.
【解析】
根据题意画图如下:
以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣1,1),则x=4或﹣1;故答案为4或﹣1.
23、.
【解析】
试题分析:点F与点C重合时,折痕EF最大,
由翻折的性质得,BC=B′C=10cm,
在Rt△B′DC中,B′D==8cm,
∴AB′=AD﹣B′D=10﹣8=2cm,
设BE=x,则B′E=BE=x,
AE=AB﹣BE=6﹣x,
在Rt△AB′E中,AE2+AB′2=B′E2,
即(6﹣x)2+22=x2,
解得x=,
在Rt△BEF中,EF=cm.
故答案是.
考点:翻折变换(折叠问题).
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)y与x的函数解析式为.
【解析】
(1)证明△BAM≌△CBF,根据全等三角形的性质证明;
(2)作EH⊥CD于H,根据全等三角形的性质求出FH,再根据梯形的面积公式计算即可.
【详解】
(1)证明:∵GE⊥AM,∴∠BAM+∠ABG=90°,又∠CBF+∠ABG=90°,
在△BAM和△CBF中,∠BAM=∠CBF,AB=BC,∠ABM=∠BCF,
∴△BAM≌△CBF(ASA),∴BM=CF;
(2)解:作EH⊥CD于H,由(1)得:△BAM≌△HEF,
∴HF=BM=2,∴DF=4-2-x=2-x,
∴,
答:y与x的函数解析式为.
故答案为:(1)见解析;(2)y与x的函数解析式为.
本题考查了全等三角形的判定与性质、正方形的性质.
25、 (1)AB=
(2)图形见解析
(3)6
【解析】
(1)根据格点图形的性质,结合勾股定理即可解题,
(2)图形如下图,答案不唯一,
(3)答案不唯一,根据菱形的对角线互相垂直平分是作出菱形的关键,菱形的面积可以根据对角线乘积的一半进行求解.
【详解】
(1)AB=
(2)如下图,
(3)如上图,AD=6,BC=2,
∴菱形ABCD的面积=
本题考查了网格图的特征,菱形的性质和面积的求法,属于简单题,熟悉菱形对角线互相垂直平分的性质是解题关键
26、见解析
【解析】
试题分析:(1)根据题意补全图形,如图所示;
(2)由旋转的性质得到为直角,由EF与CD平行,得到为直角,利用SAS得到与全等,利用全等三角形对应角相等即可得证.
试题解析:(1)补全图形,如图所示;
(2)由旋转的性质得:
∴∠DCE+∠ECF=,
∵∠ACB=,
∴∠DCE+∠BCD=,
∴∠ECF=∠BCD,
∵EF∥DC,
∴∠EFC+∠DCF=,
∴∠EFC=,
在△BDC和△EFC中,
∴△BDC≌△EFC(SAS),
∴∠BDC=∠EFC=.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均数
方差
江苏省淮安市洪泽区教育联盟学校2025届九上数学开学调研模拟试题【含答案】: 这是一份江苏省淮安市洪泽区教育联盟学校2025届九上数学开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
江苏省东台市第六教育联盟2025届数学九上开学复习检测模拟试题【含答案】: 这是一份江苏省东台市第六教育联盟2025届数学九上开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省泰州市泰州中学九上数学开学监测模拟试题【含答案】: 这是一份2025届江苏省泰州市泰州中学九上数学开学监测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。