江苏省苏州市吴中学区2024-2025学年数学九上开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在四边形ABCD中,∠A=90°,AB=3,,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为( )
A.2B.3C.4D.
2、(4分)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是( )
A.mB.mC.mD.m
3、(4分)若x-,则x-y的值为( )
A.2B.1C.0D.-1
4、(4分)一元二次方程x2﹣4x﹣6=0经过配方可变形为( )
A.(x﹣2)2=10B.(x+2)2=10C.(x﹣4)2=6D.(x﹣2)2=2
5、(4分)如图,在RtABC中,∠ACB=90°,∠A=65°,CD⊥AB,垂足为D,E是BC的中点,连接ED,则∠EDC的度数是( )
A.25°B.30°C.50°D.65°
6、(4分)如图,在中,,,,分别是和的中点,则( )
A.B.C.D.
7、(4分)下列条件中,不能判定四边形是平行四边形的是( )
A.对角线互相平分B.两组对边分别相等
C.对角线互相垂直D.一组对边平行,一组对角相等
8、(4分)如图,在中,,,点为上一点,,于点,点为的中点,连接,则的长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若某组数据的方差计算公式是S2=[(7-)+(4-)2+(3-)2+(6-)2],则公式中=______.
10、(4分)对于点P(a,b),点Q(c,d),如果a﹣b=c﹣d,那么点P与点Q就叫作等差点.例如:点P(4,2),点Q(﹣1,﹣3),因4﹣2=1﹣(﹣3)=2,则点P与点Q就是等差点.如图在矩形GHMN中,点H(2,3),点N(﹣2,﹣3),MN⊥y轴,HM⊥x轴,点P是直线y=x+b上的任意一点(点P不在矩形的边上),若矩形GHMN的边上存在两个点与点P是等差点,则b的取值范围为_____.
11、(4分)如图,在反比例函数与的图象上分别有一点,,连接交轴于点,若且,则__________.
12、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.
13、(4分)已知双曲线经过Rt△OAB斜边OA的中点D,与直角边AB相交于点C,若S△OAC=3,则k=______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知a+b=2,ab=2,求的值.
15、(8分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE=0.8 m,CA=30 m.(点A,E,C在同一直线上),已知小明的身高EF是1.7 m,请你帮小明求出楼高AB.(结果精确到0.1 m)
16、(8分)如图,在中,,,垂足分别为点、,且.
求证:是菱形.
17、(10分)某水上乐园普通票价20元/张,假期为了促销,新推出两种优惠卡:贵宾卡售价600元/张,每次凭卡不再收费;会员卡售价200元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出假期选择会员卡、普通票消费时,y与x之间的函数关系式;
(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C、D的坐标,并直接写出选择哪种消费方式更合算.
18、(10分)解分式方程:+1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若在实数范围内有意义,则的取值范围是____________.
20、(4分)直线y=3x+2沿y轴向下平移5个单位,则平移后的直线与y轴的交点坐标是_______.
21、(4分)已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
22、(4分)如图,将沿方向平移得到,如果四边形的周长是,则的周长是____.
23、(4分)若二次根式有意义,则x的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形的对角线、相交于点,,过点且与、分别相交于点、,
(1)求证:四边形是平行四边形;
(2)连接,若,周长是15,求四边形的周长.
25、(10分)为了让同学们了解自己的体育水平,八年级1班的体育老师对全班50名学生进行了一次体育模拟测试(得分均为整数).成绩满分为10分,1班的体育委员根据这次测试成绩制作了如下的统计图:
(1)根据统计图所给的信息填写下表:
(2)若女生队测试成绩的方差为1.76,请计算男生队测试成绩的方差.并说明在这次体育测试中,哪个队的测试成绩更整齐些?
26、(12分)如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).
(1)只用直尺(没有刻度)和圆规按下列要求作图.
(要求:保留作图痕迹,不必写出作法)
Ⅰ)AC⊥y轴,垂足为C;
Ⅱ)连结AO,AB,设边AB,CO交点E.
(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
连接BD、ND,由勾股定理得可得BD=4,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.
【详解】
连接BD、ND,
由勾股定理得,BD==4,
∵点E、F分别为DM、MN的中点,
∴EF=DN,
当DN最长时,EF长度的最大,
∴当点N与点B重合时,DN最长,
∴EF长度的最大值为BD=2,
故选A.
本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.
2、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定
0.000 000 94=9.4×10-1.
故选A.
3、B
【解析】
直接利用二次根式的性质得出y的值,进而得出答案.
【详解】
解:∵与都有意义,
∴y=0,
∴x=1,
故选x-y=1-0=1.
故选:B.
此题考查二次根式有意义的条件,正确把握二次根式的定义是解题关键.
4、A
【解析】
先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方的形式即可.
【详解】
x2﹣4x=6,
x2﹣4x+4=1,
(x﹣2)2=1.
故选:A.
本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
5、D
【解析】
根据三角形内角和定理求出∠B,根据直角三角形的性质得到ED=EB,得到∠EDB=∠B,进而得出∠EDC的度数.
【详解】
解:∵∠ACB=90°,∠A=65°,
∴∠B=25°,
∵CD⊥AB,E是BC的中点,
∴ED=BC=EB, ∠ADB=90°,
∴∠EDB=∠B=25°,
∴∠EDC=90°﹣25°=65°,
故选:D.
本题考查的是直角三角形的性质、三角形内角和定理,在直角三角形中,斜边上的中线等于斜边的一半.
6、A
【解析】
根据三角形的中位线即可求解.
【详解】
∵分别是和的中点,
∴EF是△ABC的中位线,
∴EF=BC=2cm
故选A.
此题主要考查中位线的性质,解题的关键是熟知三角形中位线的定义与性质.
7、C
【解析】
利用平行四边形的判定可求解.
【详解】
A、对角线互相平分的四边形是平行四边形,故该选项不符合题意;
B、两组对边分别相等的四边形是平行四边形,故该选项不符合题意;
C、对角线互相垂直的四边形不一定是平行四边形,故该选项符合题意;
D、一组对边平行,一组对角相等,可得另一组对角相等,由两组对角相等的四边形是平行四边形,故该选项不符合题意;
故选C.
本题考查了平行四边形的判定,熟练掌握平行四边形的判定是本题的关键.
8、B
【解析】
先证明Rt△BDE≌Rt△BCE(HL),得到点E是DC的中点,进而得出EF是△ADC的中位线,再根据已知数据即可得出EF的长度.
【详解】
解:∵,
∴∠BED=∠BEC
在Rt△BDE与Rt△BCE中
∴Rt△BDE≌Rt△BCE(HL)
∴DE=CE
∴点E是CD的中点,
又∵点F是AC的中点,
∴EF是△ADC的中位线,
∴
∵,,,
∴AD=AB-BC=4
∴EF=2
故答案为:B.
本题考查了全等三角形的证明及中位线的应用,解题的关键是得到EF是△ADC的中位线,并熟知中位线的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
根据代表的是平均数,利用平均数的公式即可得出答案.
【详解】
由题意,可得.
故答案为:1.
本题主要考查平均数,掌握平均数的公式是解题的关键.
10、﹣1<b<1
【解析】
由题意,G(-2,3),M(2,-3),根据等差点的定义可知,当直线y=x+b与矩形MNGH有两个交点时,矩形GHMN的边上存在两个点与点P是等差点,求出直线经过点G或M时的b的值即可判断.
【详解】
解:由题意,G(-2,3),M(2,-3),
根据等差点的定义可知,当直线y=x+b与矩形MNGH有两个交点时,矩形GHMN的边上存在两个点与点P是等差点,
当直线y=x+b经过点G(-2,3)时,b=1,
当直线y=x+b经过点M(2,-3)时,b=-1,
∴满足条件的b的范围为:-1<b<1.
故答案为:-1<b<1.
本题考查一次函数图象上点的特征、矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.
11、
【解析】
过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(-1,1)可得直线EF的解析式,求出点G的坐标后即可求解.
【详解】
过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:
∴EM∥GO∥FN
∵2EG=FG
∴根据平行线分线段成比例定理得:NO=2MO
∵E(-1,1)
∴MO=1
∴NO=2
∴点F的横坐标为2
∵F在的图象上
∴F(2,2)
又∵E(-1,1)
∴由待定系数法可得:直线EF的解析式为:y=
当x=0时,y=
∴G(0,)
∴OG=
故答案为:.
此题考查反比例函数的综合应用,平行线分线段成比例定理,待定系数法求一次函数的解析式,解题关键在于掌握待定系数法求解析式.
12、二
【解析】
根据各象限内点的坐标特征,可得答案.
【详解】
解:由点A(x,y)在第三象限,得
x<0,y<0,
∴x<0,-y>0,
点B(x,-y)在第二象限,
故答案为:二.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
13、﹣1.
【解析】
解:设D(m,).∵双曲线经过Rt△OAB斜边OA的中点D,∴A(1m,).∵S△OAC=3,∴•(﹣1m)• +k=3,∴k=﹣1.故答案为:﹣1.
点睛:本题考查了反比例函数系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
三、解答题(本大题共5个小题,共48分)
14、1
【解析】
根据因式分解,首先将整式提取公因式,在采用完全平方公式合,在代入计算即可.
【详解】
解:原式=a3b+a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2,
∵a+b=2,ab=2,
∴原式=×2×1=1.
本题主要考查因式分解的代数计算,关键在于整式的因式分解.
15、21.1米.
【解析】
试题分析:将实际问题转化为数学问题进行解答;解题时要注意构造相似三角形,利用相似三角形的相似比,列出方程,通过解方程求解即可.
解:过点D作DG⊥AB,分别交AB、EF于点G、H,
∵AB∥CD,DG⊥AB,AB⊥AC,
∴四边形ACDG是矩形,
∴EH=AG=CD=1.2,DH=CE=1.8,DG=CA=31,
∵EF∥AB,
∴,
由题意,知FH=EF﹣EH=1.7﹣1.2=1.5,
∴,解得,BG=18.75,
∴AB=BG+AG=18.75+1.2=19.95≈21.1.
∴楼高AB约为21.1米.
考点:相似三角形的应用.
16、见解析.
【解析】
利用全等三角形的性质证明AB=AD即可解决问题.
【详解】
是平行四边形,
∵AE⊥BC,AF⊥CD,
∴∠AEB=∠AFD=90°,
在和中,
∴ABCD是菱形.
本题考查了菱形的判定、全等三角形的判定和性质等知识,熟练掌握相关的性质与定理是解题的关键.
17、 (1), ;(2)A(0,200),B(20,400),C(40,600),D(30,600),当时, 选择普通消费;当x=20时,选择普通消费或会员卡都可以;当时,选择会员卡;当x=40时,选择贵宾卡或会员卡都可以;当时,选择贵宾卡
【解析】
(1)根据会员卡售价200元/张,每次凭卡另收10元,以及普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;
(2)利用函数交点坐标求法分别得出即可;利用点的坐标以及结合得出函数图象得出答案.
【详解】
解:(1)根据题意得:普通消费:,
会员卡:;
(2)令,即,
解得x=20,y=400,
即A(0,200),B(20,400),D(30,600),
当y=600时,代入解得:x=40,
即点C的坐标为C(40,600),
当时,选择普通消费,
当x=20时,选择普通消费或会员卡都可以,
当时,选择会员卡,
当x=40时,选择贵宾卡或会员卡都可以,
当时,选择贵宾卡.
此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.
18、x=.
【解析】
按照解分式方程的步骤解方程即可.
【详解】
解:
方程两边都乘以得:
解得:
检验:当时,2(x﹣1)≠0,
所以是原方程的解,
即原方程的解为.
本题考查分式方程注意检验.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、且.
【解析】
分析:根据分式有意义和二次根式有意义的条件解题.
详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.
故答案为x≥0且x≠1.
点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.
20、(0,-3).
【解析】
直线y=3x+2沿y轴向下平移5个单位后对应的解析式为y=3x+2-5,
即y=3x-3,
当x=0时,y=-3,
即与y轴交点坐标为(0,-3).
21、
【解析】
先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
【详解】
由根与系数的关系得:m+n=,mn=,
∴m2+n2=(m+n)2-2mn=()2-2×=,
故答案为:.
本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
22、
【解析】
根据平移的性质可得,即可求得的周长.
【详解】
平移,
,
,
,
故答案为:1.
本题考查了三角形平移的问题,掌握平移的性质是解题的关键.
23、x≥
【解析】
根据二次根式中的被开方数是非负数,可得出x的取值范围.
【详解】
∵二次根式有意义,∴2x﹣1≥0,解得:x≥.
故答案为x≥.
本题考查了二次根式有意义的条件,解答本题的关键是掌握:二次根式有意义,被开方数为非负数.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2)30.
【解析】
(1)根据全等三角形的性质和判断,结合平行四边形的判定即可得到答案;
(2)根据平行四边形的性质即可得到答案.
【详解】
(1)∵,
∴,∴
∴,∴
∵
∴,
∴
∴四边形是平行四边形.
(2)∵,∴
∴
即
∵中
∴的周长是.
本题考查全等三角形的性质和判断、平行四边形的判定和性质,解题的关键是掌握全等三角形的性质和判断、平行四边形的判定和性质.
25、(1)8;8;8;(2)女生测试成绩更整齐些
【解析】
(1)根据平均数、众数的定义求解即可;
(2)先计算男生队测试成绩的方差,然后根据方差越小越整齐解答.
【详解】
(1)男生的平均数:(5×1+6×3+7×5+8×7+9×4+10×5) ÷(1+3+5+7+4+5)=8分;
男生的众数:∵8分出现的次数最多,∴众数是8分;
女生的众数:∵8分出现的次数最多,∴众数是8分;
(2)[(5-8)2×1+(6-8)2×3+(7-8)2×5+(8-8)2×7+(9-8)2×4+(10-8)2×5]÷25=2,
∵1.76<2,
∴女生测试成绩更整齐些.
本题考查了平均数、众数、标准差的求法,平均数是指在一组数据中所有数据之和再除以数据的个数.解题的关键是掌握加权平均数和方差公式.
26、(1)见解析;(2)△AOE的面积与△BOE的面积相等.
【解析】
试题分析:(1)过点A作AC⊥y轴于C,连接AB交y轴于E,如图,
(2)证明△ACE≌△BOE,则AE=BE,于是根据三角形面积公式可判断△AOE的面积与△BOE的面积相等.
解:(1)如图,
(2)∵A(3,4),B(﹣3,0),
∴AC=OB=3,
在△ACE和△BOE中,
,
∴△ACE≌△BOE,
∴AE=BE,
∴△AOE的面积与△BOE的面积相等.
题号
一
二
三
四
五
总分
得分
批阅人
平均数(分)
中位数(分)
众数(分)
男生
8
女生
8
8
江苏省苏州市市辖区2024-2025学年数学九上开学达标检测试题【含答案】: 这是一份江苏省苏州市市辖区2024-2025学年数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省苏州市吴中学、吴江、相城区数学九上开学综合测试试题【含答案】: 这是一份2025届江苏省苏州市吴中学、吴江、相城区数学九上开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省苏州市名校九上数学开学达标测试试题【含答案】: 这是一份2025届江苏省苏州市名校九上数学开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。