江苏省苏州市张家港第一中学2024年数学九上开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四边形中,是中心对称而不是轴对称图形的是( )
A.平行四边形B.矩形C.菱形D.正方形
2、(4分)如图,矩形是延长线上一点,是上一点,若则的度数是( )
A.B.
C.D.
3、(4分)下列计算结果正确的是
A.B.C.D.
4、(4分)如图,在中,,,,延长到点,使,交于点,在上取一点,使,连接.有以下结论:①平分;②;③是等边三角形;④,则正确的结论有( )
A.1个B.2个C.3个D.4个
5、(4分)某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有42名同学
B.该班学生这次考试成绩的众数是8
C.该班学生这次考试成绩的平均数是27
D.该班学生这次考试成绩的中位数是27分
6、(4分)已知点的坐标是,点与点关于轴对称,则点的坐标为( )
A.B.C.D.
7、(4分)的值等于( )
A.B.C.D.
8、(4分)已知a>b,若c是任意实数,则下列不等式中总是成立的是()
A.a-c>b-cB.a+c<b+cC.ac>bcD.ac<bc
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知直线经过点(-2,2),并且与直线平行,那么________.
10、(4分)如图,∠A=∠D=90°,请添加一个条件:_____,使得△ABC≌△DCB.
11、(4分)若关于的方程无解,则的值为________.
12、(4分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为_____.
13、(4分)如图1,长为60km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B、A后立刻返回到出发站停止,速度均为30km/h,设甲车,乙车距南站A的路程分别为y甲,y乙(km)行驶时间为t(h).
(1)图2已画出y甲与t的函数图象,其中a=,b=,c= .
(2)分别写出0≤t≤2及2<t≤4时,y乙与时间t之间的函数关系式.
(3)在图2中补画y乙与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如(图1),在平面直角坐标中,A(12,0),B(6,6),点C为线段AB的中点,点D与原点O关于点C对称.
(1)利用直尺和圆规在(图1)中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;
(2)在(图1)中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).
①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;
②当t=5时,CE=CF,请直接写出a的值.
15、(8分)两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:
(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不要求写出自变量x的取值范围);
(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.
16、(8分)(1)分解因式:x(x﹣y)﹣y(y﹣x)
(2)解不等式组,并把它的解集在数轴上表示出来.
17、(10分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0),A(2,4),B(4,0),分别将点A、B的横坐标、纵坐标都乘以1.5,得相应的点A'、B'的坐标。
(1)画出 OA'B':
(2)△OA'B'与△AOB______位似图形:(填“是”或“不是”)
(3)若线段AB上有一点,按上述变换后对应的A'B'上点的坐标是______.
18、(10分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1元后,超出1元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1.
(1)根据题题意,填写下表(单位:元)
(2)当x取何值时,小红在甲、乙两商场的实际花费相同?
(3)当小红在同一商场累计购物超过1元时,在哪家商场的实际花费少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一种运算:规则是x※y=-,根据此规则化简(m+1)※(m-1)的结果为_____.
20、(4分)根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣,则输出的结果为_____
21、(4分)如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P、Q分别是BD、AB上的动点,则AP+PQ的最小值为______.
22、(4分)如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.
23、(4分)如图,在平行四边形ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB于点F,交DC的延长线于点G,则DE=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.
(1)如图①,当点D落在BC边上时,求点D的坐标;
(2)如图②,当点D落在线段BE上时,AD与BC交于点H.
①求证△ADB≌△AOB;
②求点H的坐标.
(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).
25、(10分)如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求证:四边形PMAN是正方形;
(2)求证:EM=BN;
(3)若点P在线段AC上移动,其他不变,设PC=x,AE=y,求y关于x的解析式.
26、(12分)一个三角形的三边长分别为5,,.
(1)求它的周长(要求结果化简);
(2)请你给出一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
【分析】根据理解中心对称图形和轴对称图形定义,可以判断.
【详解】平行四边形是中心对称图形,不是轴对称图形;矩形是中心对称图形,也是轴对称图形;菱形是中心对称图形,也是轴对称图形;正方形是中心对称图形,也是轴对称图形.只有选项A符合条件.
故选A
【点睛】本题考核知识点:中心对称图形和轴对称图形.解题关键点:理解中心对称图形和轴对称图形定义.
2、B
【解析】
根据矩形性质求出∠BCD=90°,AB∥CD,根据平行线的性质和外角的性质求出∠ACD=3∠DCE,即可得出答案.
【详解】
解:∵四边形ABCD是矩形,
∴AB∥CD,∠BCD=90°,
∵∠ACB=24°,
∴∠ACD=90°-24°=66°,
∵∠ACF=∠AFC,∠FAE=∠E,∠AFC=∠FAE+∠E
∴∠AFC=2∠E
∵AB∥CD
∴∠E=∠DCE
∴∠ACD=3∠DCE=66°,
∴∠DCE=22°
故选:B.
本题考查了矩形的性质,平行线的性质,三角形外角性质等知识点,能求出∠FEA的度数是解此题的关键.
3、C
【解析】
根据二次根式的运算法则进行分析.
【详解】
A. ,不是同类二次根式,不能合并,本选项错误;
B. ,本选项错误;
C. ,本选项正确;
D. ,本选项错误.
故选C
本题考核知识点:二次根式运算. 解题关键点:理解二次根式运算法则.
4、D
【解析】
先根据等腰直角三角形的性质及已知条件得出∠DAB=∠DBA=30°,则AD=BD,再证明CD是边AB的垂直平分线,得出∠ACD=∠BCD=45°,然后根据三角形外角的性质求出∠CDE=∠BDE=60°即可判断①②;利用差可求得结论:∠CDE=∠BCE-∠ACB=60°,即可判断③;证明△DCG是等边三角形,再证明△ACD≌△ECG,利用线段的和与等量代换即可判断④.
【详解】
解:∵△ABC是等腰直角三角形,∠ACB=90°,
∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD,
∴D在AB的垂直平分线上,
∵AC=BC,
∴C也在AB的垂直平分线上,
即直线CD是AB的垂直平分线,
∴∠ACD=∠BCD=45°,
∴∠CDE=∠CAD+∠ACD=15°+45°=60°,
∵∠BDE=∠DBA+∠BAD=60°;
∴∠CDE=∠BDE,
即DE平分∠BDC;
所以①②正确;
∵CA=CB,CB=CE,
∴CA=CE,
∵∠CAD=∠CBD=15°,
∴∠BCE=180°-15°-15°=150°,
∵∠ACB=90°,
∴∠ACE=150°-90°=60°,
∴△ACE是等边三角形;
所以③正确;
∵,∠EDC=60°,
∴△DCG是等边三角形,
∴DC=DG=CG,∠DCG=60°,
∴∠GCE=150°-60°-45°=45°,
∴∠ACD=∠GCE=45°,
∵AC=CE,
∴△ACD≌△ECG,
∴EG=AD,
∴DE=EG+DG=AD+DC,
所以④正确;
正确的结论有:①②③④;
故选:D.
本题考查了等腰三角形、全等三角形的性质和判定、等腰直角三角形、等边三角形等特殊三角形的性质和判定,熟练掌握有一个角是60°的等腰三角形是等边三角形这一判定等边三角形的方法,在几何证明中经常运用.
5、B
【解析】
根据众数,中位数,平均数的定义解答.
【详解】
解:该班共有6+5+5+8+7+7+4=42(人),
成绩27分的有8人,人数最多,众数为27;
该班学生这次考试成绩的平均数是=(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,
该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,
故选:B.
本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
6、B
【解析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
【详解】
点A关于y轴对称的点的坐标是B,
故选:B.
此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.
7、A
【解析】
分析:根据平方与开平方互为逆运算,可得答案.
详解:=,
故选A.
点睛:本题考查了算术平方根,注意一个正数的算术平方根只有一个.
8、A
【解析】
根据不等式的性质,应用排除法分别将各选项分析求解即可求得答案.
【详解】
A、∵a>b,c是任意实数,∴a-c>b-c,故本选项正确;
B、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;
C、当a>b,c<0时,ac>bc,而此题c是任意实数,故本选项错误;
D、当a>b,c>0时,ac<bc,而此题c是任意实数,故本选项错误.
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
根据两直线平行的问题得到k=2,然后把(﹣2,2)代入y=2x+b可计算出b的值.
解:∵直线y=kx+b与直线y=2x+1平行,
∴k=2,
把(﹣2,2)代入y=2x+b得2×(﹣2)+b=2,解得b=1.
故答案为1.
10、∠ABC=∠DCB.
【解析】
有一个直角∠A=∠D=90°相等,有一个公共边相等,可以加角,还可以加边,都行,这里我们选择加角∠ABC=∠DCB
【详解】
解:因为∠A=∠D=90°,BC=CB,∠ABC=∠DCB,所以△ABC≌△DCB,故条件成立
本题主要考查三角形全等
11、
【解析】
分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.
【详解】
去分母得:3x−2=2x+2+m,
由分式方程无解,得到x+1=0,即x=−1,
代入整式方程得:−5=−2+2+m,
解得:m=−5,
故答案为-5.
此题考查分式方程的解,解题关键在于掌握运算法则.
12、1
【解析】
本题根据一元二次方程的根的定义、一元二次方程的定义求解.
【详解】
∵x=3是方程的根,由一元二次方程的根的定义,可得32-3k-6=0,解此方程得到k=1.
本题逆用一元二次方程解的定义易得出k的值.
13、(1)a=3,b=2,c=1.
y乙=3-30t(0≤t≤2) y乙=30t-3(2
【解析】
试题分析:(1)由函数图象的数据,根据行程问题的数量关系就可以求出结论;
(2)当0≤t≤2时,设y乙与时间t之间的函数关系式为y乙=kx+b;当2<t≤1时,设y乙与时间t之间的函数关系式为y乙=k1x+b1;由待定系数法就可以求出结论;
(3)通过描点法画出函数图象即可.
试题解析:(1)由题意,得a=3,b=2,c=1.故答案为:3,2,1;
(2)当0≤t≤2时,设y乙与时间t之间的函数关系式为y乙=kx+b,由题意,得,
解得:,∴y乙=-30t+3
当2<t≤1时,设y乙与时间t之间的函数关系式为y乙=k1x+b1,由题意,得,
解得:,∴y乙=30t-3.
(3)列表为:
描点并连线为:
如图,由于两个图象有两个交点,所以在整个行驶过程中两车相遇次数为2.
考点:一次函数的应用.
三、解答题(本大题共5个小题,共48分)
14、(1)四边形OBDA是平行四边形,见解析;(2)①2+,②或或
【解析】
(1)作射线OC,截取CD=OC,然后由对角线互相平分的四边形是平行四边形进行可得到四边形的形状;
(2)①由直线EF恰好平分四边形OBDA的面积可知直线EF必过C,接下来,证明△OEC≌△DFC,从而可求得DF的长度,于是得到BF=2,然后再由两点间的距离公式求得OB的长,从而可求得a的值;
②先求得点E的坐标,然后求得EC的长,从而得到CF1的长,然后依据勾股定理的逆定理证明∠OBA=90°,在△BCF1中,依据勾股定理可求得BF1的长,从而可求得a的值,设点F2的坐标(b,6),由CE=CF列出关于b的方程可求得点F2的坐标,从而可求得a的值,在Rt△CAF3中,取得AF3的长,从而求得点F运动的路程,于是可求得a的值.
【详解】
解:(1)如图所示:
四边形OBDA是平行四边形.
理由如下:∵点C为线段AB的中点,
∴CB=CA.
∵点D与原点O关于点C对称,
∴CO=CD.
∴四边形OBDA是平行四边形.
(2)①如图2所示;
∵直线EF恰好平分四边形OBDA的面积,
∴直线EF必过C(9,3).
∵t=1,
∴OE=1.
∵BD∥OA,
∴∠COE=∠CDF.
∵在△OEC和△DFC中,
∴△OEC≌△DFC.
∴DF=OE=1.
∴BF=4-1=2.
由两点间的距离公式可知OB==6.
∴1a=6+2.
∴a=2+.
②如图3所示:
∵当t=3时,OE=3,
∴点E的坐标(3,0).
由两点间的距离公式可知EC==3.
∵CE=CF,
∴CF=3.
由两点间的距离公式可知OB=BA=6,
又∵OA=4.
∴△OBA为直角三角形.
∴∠OBA=90°.
①在直角△F1BC中,CF1=3,BC=3,
∴BF1=.
∴OF1=6-.
∴a=.
②设F2的坐标为(b,6).由两点间的距离公式可知=3.
解得;b=3(舍去)或b=5.
∴BF2=5-6=6.
∴OB+BF2=6+6.
∴a=.
③∵BO∥AD,
∴∠BAD=∠OBA=90°.
∴AF3==.
∴DF3=6-.
∴OB+BD+DF3=6+4+6-=4-+4.
∴a=.
综上所述a的值为或或.
本题主要考查的是四边形的综合应用,解答本题主要应用了平行四边形的判定、全等三角形的性质和判定、勾股定理和勾股定理的逆定理的应用,两点间的距离公式求得F1B,F2D,F3A的长度是解题的关键.
15、(1); (2)22.1
【解析】
(1)使用待定系数法列出方程组求解即可.
(2)把x=12代入(1)中的函数关系式,就可求解.
【详解】
(1)设函数关系式为y=kx+b,根据题意得
解得
∴y与x之间的函数关系式为y=1.1x+4.1.
(2)当x=12时,y=1.1×12+4.1=22.1.
∴桌面上12个整齐叠放的饭碗的高度是22.1cm.
本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.
16、(1)(x﹣y)(x+y);(2)﹣2<x≤1
【解析】
分析:(1)根据提公因式法,可分解因式;
(2)根据解不等式,可得每个不等式的解集,根据不等式组的解集是不等式的公共部分,可得答案.
解:(1)原式=(x﹣y)(x+y);
(2)解不等式①1,得x>﹣2,
解不等式②,得x≤1,
把不等式①②在数轴上表示如图
,
不等式组的解集是﹣2<x≤1.
【点评】本题考查了因式分解,确定公因式(x﹣y)是解题关键.
17、(1)见解析;(2)是;(3).
【解析】
(1)直接利用将点A、B的横坐标、纵坐标都乘以1.5,得相应的点A'、B'的坐标,即可得出答案;
(2)利用位似图形的定义得出答案;
(3)利用位似图形的性质即可得出对应点坐标.
【详解】
解:(1)根据题意可知A'坐标为(21.5,41.5),即A'(3,6),同理B'(6,0),
如图所示:△OA'B',即为所求;
(2)如(1)中图形所示,OA和OA'、OB和OB'在同一直线上,AB平行于A' B',
所以△OA'B'与△AOB是位似图形;
故答案为:是;
(3)若线段AB上有一点D(x0,y0),按上述变换后对应的A'B'上点的坐标是:(1.5x0,1.5y0),
故答案为:(1.5x0,1.5y0).
此题主要考查了位似变换以及位似图形的性质,正确得出对应点位置是解题关键.
18、(1)表格见解析;(2)120;(3)当小红累计购物大于120时上没封顶,选择甲商场实际花费少;当小红累计购物超过1元而不到120元时,在乙商场实际花费少.
【解析】
(1)根据已知得出:
在甲商场:1+(290-1)×0.9=271,1+(290-1)×0.9x=0.9x+10;
在乙商场:20+(290-20)×0.92=278,20+(290-20)×0.92x=0.92x+2.2.
(2)根据题中已知条件,求出0.92x+2.2,0.9x+10相等,从而得出正确结论.
(3)根据0.92x+2.2与0.9x+10相比较,从而得出正确结论.
【详解】
解:(1)填表如下:
(2)根据题意得:0.9x+10=0.92x+2.2,
解得:x=120.
答:当x=120时,小红在甲、乙两商场的实际花费相同.
(3)由0.9x+10<0.92x+2.2解得:x>120,
由0.9x+10>0.92x+2.2,解得:x<120,
∴当小红累计购物大于120时上没封顶,选择甲商场实际花费少;
当小红累计购物超过1元而不到120元时,在乙商场实际花费少.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据题目中的运算法则把(m+1)※(m-1)化为,再利用异分母分式的加减运算法则计算即可.
【详解】
∵x※y=-,
∴(m+1)※(m-1)
=
=
=
=
故答案为:.
本题考查了新定义运算,根据题目中的运算法则把(m+1)※(m-1)化为是解本题的关键.
20、-1.5
【解析】
∵-2<<1,
∴x=时,y=x-1=,
故答案为.
21、2
【解析】
作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
【详解】
解:作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.
∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,
∴P′Q′=P′H,
∴AP′+P′Q′=AP′+P′H=AH,
根据垂线段最短可知,PA+PQ的最小值是线段AH的长,
∵AB=4,∠AHB=90°,∠ABH=45°,
∴AH=BH=2,
故答案为:2.
本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.
22、1
【解析】
根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.
【详解】
根据图象可知 位于线段BC上,
设线段BC的解析式为
将代入解析式中得
解得
∴线段BC解析式为 ,
当时,,
∴乘坐该出租车8(千米)需要支付的金额为1元.
故答案为:1.
本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.
23、.
【解析】
由平行四边形的性质得出CD=AB=3,BC=AD=4,AB∥CD,由平行线的性质得出∠GCE=∠B=60°,证出EF⊥DG,由含30°角的直角三角形的性质得出CG=CE=1,求出EG=CG=,DG=CD+CG=4,由勾股定理求出DE即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴CD=AB=3,BC=AD=4,AB∥CD,
∴∠GCE=∠B=60°,
∵E是BC的中点,
∴CE=BE=2,
∵EF⊥AB,
∴EF⊥DG,
∴∠G=90°,
∴CG=CE=1,
∴EG=CG=,DG=CD+CG=3+1=4,
∴DE=;
故答案为.
本题考查了平行四边形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的性质,由含30°角的直角三角形的性质求出CG是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)D(1,3);(2)①详见解析;②H(,3);(3)≤S≤.
【解析】
(1)如图①,在Rt△ACD中求出CD即可解决问题;
(2)①根据HL证明即可;
②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;
【详解】
(1)如图①中,
∵A(5,0),B(0,3),
∴OA=5,OB=3,
∵四边形AOBC是矩形,
∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,
∵矩形ADEF是由矩形AOBC旋转得到,
∴AD=AO=5,
在Rt△ADC中,CD==4,
∴BD=BC-CD=1,
∴D(1,3).
(2)①如图②中,
由四边形ADEF是矩形,得到∠ADE=90°,
∵点D在线段BE上,
∴∠ADB=90°,
由(1)可知,AD=AO,又AB=AB,∠AOB=90°,
∴Rt△ADB≌Rt△AOB(HL).
②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,
又在矩形AOBC中,OA∥BC,
∴∠CBA=∠OAB,
∴∠BAD=∠CBA,
∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,
在Rt△AHC中,∵AH2=HC2+AC2,
∴m2=32+(5-m)2,
∴m=,
∴BH=,
∴H(,3).
(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=•DE•DK=×3×(5-)=,
当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=×D′E′×KD′=×3×(5+)=.
综上所述,≤S≤.
本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.
25、 (1)见解析;(2)见解析;(3) y=﹣x+1.
【解析】
(1)由四边形ABCD是正方形,易得∠BAD=90°,AC平分∠BAD,又由PM⊥AD,PN⊥AB,即可证得四边形PMAN是正方形;
(2)由四边形PMAN是正方形,易证得△EPM≌△BPN,即可证得:EM=BN;
(3)首先过P作PF⊥BC于F,易得△PCF是等腰直角三角形,继而证得△APM是等腰直角三角形,可得AP=AM=(AE+EM),即可得方程﹣x=(y+x),继而求得答案.
【详解】
(1)∵四边形ABCD是正方形,
∴AC平分∠BAD,
∵PM⊥AD,PN⊥AB,
∴PM=PN,
又∵∠BAD=90°,∠PMA=∠PNA=90°,
∴四边形PMAN是矩形,
∴四边形PMAN是正方形;
(2)∵四边形PMAN是正方形,
∴PM=PN,∠MPN=90°,
∵∠EPB=90°,
∴∠MPE=∠NPB,
在△EPM和△BPN中,
,
∴△EPM≌△BPN(ASA),
∴EM=BN;
(3)过P作PF⊥BC于F,如图所示:
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC=1,∠PCF=45°,
∴AC==,△PCF是等腰直角三角形,
∴AP=AC﹣PC=﹣x,BN=PF=x,
∴EM=BN=x,
∵∠PAM=45°,∠PMA=90°,
∴△APM是等腰直角三角形,
∴AP=AM=(AE+EM),
即﹣x=(y+x),
解得:y=﹣x+1.
本题是四边形的综合题.考查了正方形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的判定与性质.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.
26、(1);(2)见解析.
【解析】
(1)周长;
(2)当x=20时,周长=(或当x=时,周长=等).
(答案不唯一,符合题意即可)
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
24
25
26
27
28
29
30
人数(人)
6
5
5
8
7
7
4
累计购物实际花费
130
290
…
x
在甲商场
127
…
在乙商场
126
…
t
0
2
1
y乙=-30t+3(0≤t≤2)
3
0
y乙=30t-3(2<t≤1)
0
3
累计购物实际花费
130
290
…
x
在甲商场
127
271
…
0.9x+10
在乙商场
126
278
…
0.92x+2.2
2025届江苏省苏州市新草桥中学数学九上开学质量检测模拟试题【含答案】: 这是一份2025届江苏省苏州市新草桥中学数学九上开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省苏州市张家港市梁丰高级中学数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份2024年江苏省苏州市张家港市梁丰高级中学数学九年级第一学期开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省苏州市实验中学数学九上开学质量检测试题【含答案】: 这是一份2024年江苏省苏州市实验中学数学九上开学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。