|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届江苏省苏州市新草桥中学数学九上开学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    2025届江苏省苏州市新草桥中学数学九上开学质量检测模拟试题【含答案】01
    2025届江苏省苏州市新草桥中学数学九上开学质量检测模拟试题【含答案】02
    2025届江苏省苏州市新草桥中学数学九上开学质量检测模拟试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江苏省苏州市新草桥中学数学九上开学质量检测模拟试题【含答案】

    展开
    这是一份2025届江苏省苏州市新草桥中学数学九上开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)二次根式、、、、、中,最简二次根式有( )个.
    A.1 个B.2 个C.3 个D.4个
    2、(4分)若点P(2m+1,)在第四象限,则m的取值范围是( )
    A.B.C.D.
    3、(4分)如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于( )
    A.60°B.65°C.75°D.80°
    4、(4分)直线y=x+1与y=–2x–4交点在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    5、(4分)如图,在平行四边形中,与交于点,点在上,,,,点是的中点,若点以/秒的速度从点出发,沿向点运动:点同时以/秒的速度从点出发,沿向点运动,点运动到点时停止运动,点也时停止运动,当点运动( )秒时,以点、、、为顶点的四边形是平行四边形.
    A.2B.3C.3或5D.4或5
    6、(4分)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点E、F,FD⊥x轴,垂足为D,连接OE、OF、EF,FD与OE相交于点G.下列结论:①OF=OE;②∠EOF=60°;③四边形AEGD与△FOG面积相等;④EF=CF+AE;⑤若∠EOF=45°,EF=4,则直线FE的函数解析式为.其中正确结论的个数是( )
    A.2B.3C.4D.5
    7、(4分)下列图形中,既是中心对称图形又是轴对称图形的是( )
    A.B.C.D.
    8、(4分)如果,那么yx的算术平方根是( )
    A.2B.1C.-1D.±1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若有意义,则m能取的最小整数值是__.
    10、(4分)已知一个直角三角形的斜边长为6cm,那么这个直角三角形斜边上的中线长为________cm.
    11、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D为平面内动点,且满足AD=4,连接BD,取BD的中点E,连接CE,则CE的最大值为_____.
    12、(4分)如图,在菱形中,,菱形的面积为24,则菱形周长为________
    13、(4分)若关于 y 的一元二次方程 y2﹣4y+k+3=﹣2y+4 有实根,则 k 的取值范围是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,等腰直角三角形中,,点是斜边上的一点,将沿翻折得,连接,若是等腰三角形,则的长是______.
    15、(8分)解下列不等式组,并把它的解集表示在数轴上:
    16、(8分)如图,在直角坐标系内,点A(0,5),B(-4,0),C(1,0).请在图中画出把△ABC向右平移两个单位,得到的△DEF,并直接写出点D,E,F的坐标.
    17、(10分)如图,在△ABC中,∠ACB=90°,AC=8,BC=1.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
    (1)求线段CD的长;
    (2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
    (3)当点P在线段AD上运动时,求S与t的函数关系式.
    18、(10分)如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.
    (1)求点A、B、C的坐标;
    (2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)函数中,自变量x的取值范围是___________.
    20、(4分)若n边形的内角和是它的外角和的2倍,则n= .
    21、(4分)直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是_____cm.
    22、(4分)如图,字母A所代表的正方形面积为____.
    23、(4分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)因式分解:
    (2)解方程:
    25、(10分)顺次连接四边形各边中点所得的四边形叫中点四边形.回答下列问题:
    (1)只要原四边形的两条对角线______,就能使中点四边形是菱形;
    (2)只要原四边形的两条对角线______,就能使中点四边形是矩形;
    (3)请你设计一个中点四边形为正方形,但原四边形又不是正方形的四边形,把它画出来.
    26、(12分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是甲乙两车离A地的距离y(千米)与行驶时间x(小时)之间的函数图象.
    (1)求甲车离A地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
    (2)若它们出发第5小时时,离各自出发地的距离相等,求乙车离A地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
    (3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    直接利用最简二次根式的定义判断得出结论即可.
    【详解】
    在二次根式、、、、、中,最简二次根式有: 、、,共3个
    故选:C
    本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:
    (1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
    (2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.
    2、C
    【解析】
    点P(2m+1,)在第四象限,故2m+1>0,<0,解不等式可得.
    【详解】
    ∵点P(2m+1,)在第四象限,
    ∴2m+1>0,<0,
    解得:.
    故选:C
    考核知识点:点的坐标和象限.理解点的坐标符号与限项关系.
    3、C
    【解析】
    连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
    【详解】
    连接BD,
    ∵四边形ABCD为菱形,∠A=60°,
    ∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
    ∵P为AB的中点,
    ∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
    ∴∠PDC=90°,
    ∴由折叠的性质得到∠CDE=∠PDE=45°,
    在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
    故选:C.
    此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
    4、C
    【解析】
    试题分析:直线y=x+1的图象经过一、二、三象限,y=–2x–4的图象经过二、三、四象限,所以两直线的交点在第三象限.故答案选C.
    考点:一次函数的图象.
    5、C
    【解析】
    由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,,证得,求出AD的长,得出EC的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
    【详解】
    解:∵四边形是平行四边形,
    ∴,
    ∴,且

    ∴,
    ∵点是的中点
    ∴,
    设当点P运动t秒时,以点、、、为顶点的四边形是平行四边形,

    ∴,或
    ∴或5
    故选:C.
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.
    6、B
    【解析】
    ①通过证明全等判断,②④只能确定为等腰三角形,不能确定为等边三角形,据此判断正误,③通过判断,⑤作于点M通过直角三角形求出E、F坐标从而求得直线解析式.
    【详解】
    ∵点E、F都在反比例函数的图像上,
    ∴,即 ,
    ∵四边形是正方形,
    ∴,

    ∴,
    ∴,①正确;

    ∴,
    ∵k的值不能确定,
    ∴的值不能确定,②错误;
    ∴只能确定为等腰三角形,不能确定为等边三角形,
    ∴ ,,
    ∴ ,, ④错误;
    ∵,
    ∴ ,
    ∴,③正确;
    作于点M,如图
    ∵,为等腰直角三角形,,
    设,则 ,
    在中, ,
    即,解得 ,
    ∴ ,
    在正方形中, ,
    ∴ ,即为等腰直角三角形,
    ∴,
    设正方形的边长为,则,
    在中, ,
    即,解得
    ∴ ,


    设直线的解析式为,过点
    则有 解得
    故直线的解析式为;⑤正确;
    故正确序号为①③⑤,选 .
    本题考查了反比例函数与正方形的综合运用,解题的关键在于利用函数与正方形的相关知识逐一判断正误.
    7、B
    【解析】
    首先根据把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形,分别找出各选项所给图形中是轴对称图形的选项,进而排除不是轴对称
    图形的选项;
    然后再分析得到的是轴对称图形的选项,根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,找出它们当中是中心对称图形的选项即可
    【详解】
    A 是中心对称图形,不是轴对称图形,不符合题意
    B.既是中心对称图形又是轴对称图形,符合题意;
    C.既不是中心对称图形,也不是轴对称图形,不符合题意
    D是轴对称图形,不是中心对称图形,不符合题意
    故选B
    此题主要考查中心对称图形和轴对称图形,根据定义对各选项进行分析判断是解决问题的关键;
    8、B
    【解析】
    根据二次根式的性质,先求出x和y的值,然后代入计算即可.
    【详解】
    解:∵,
    ∴,,
    ∴且,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴的算术平方根为1;
    故选:B.
    本题考查了二次根式的性质,二次根式的化简,以及算术平方根的定义,解题的关键是熟练掌握二次根式的性质,正确求出x、y的值.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据二次根式的意义,先求m的取值范围,再在范围内求m的最小整数值.
    【详解】
    ∵若有意义
    ∴3m﹣1≥0,解得m≥
    故m能取的最小整数值是1
    本题考查了二次根式的意义以及不等式的特殊解等相关问题.
    10、1
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可求得答案.
    【详解】
    解:
    ∵直角三角形斜边长为6cm,
    ∴斜边上的中线长= ,
    故答案为:1.
    本题主要考查直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.
    11、1.
    【解析】
    作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.
    【详解】
    解:作AB的中点M,连接EM、CM.
    在Rt△ABC中,AB===10,
    ∵M是直角△ABC斜边AB上的中点,
    ∴CM=AB=3.
    ∵E是BD的中点,M是AB的中点,
    ∴ME=AD=3.
    ∴3﹣3≤CE≤3+3,即3≤CE≤1.
    ∴最大值为1,
    故答案为:1.
    本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.
    12、20
    【解析】
    根据菱形面积公式可求BD的长,根据勾股定理可求菱形边长,即可求周长.
    【详解】
    解:∵S菱形ABCD=AC×BD,
    ∴24=×8×BD,
    ∴BD=6,
    ∵ABCD是菱形,
    ∴AO=CO=4,BO=DO=3,AC⊥BD,
    ∴,
    ∴菱形ABCD的周长为4×5=20.
    本题考查了菱形的性质,利用菱形的面积公式求BD的长是本题的关键.
    13、
    【解析】
    首先把方程化为一般形式,再根据方程有实根可得△=,再代入a、b、c的值再解不等式即可.
    【详解】
    解:y2﹣4y+k+3=﹣2y+4,化为一般式得:,
    再根据方程有实根可得:△=,则
    ,解得:;
    ∴则 k 的取值范围是:.
    故答案为:.
    本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
    三、解答题(本大题共5个小题,共48分)
    14、或
    【解析】
    分两种情形:①如图1中,当ED=EA时,作DH⊥BC于H.②如图2中,当AD=AE时,分别求解.
    【详解】
    如图1中,当ED=EA时,作DH⊥BC于H.
    ∵CB=CA,∠ACB=90°,
    ∴∠B=∠CAB=45°,
    由翻折不变性可知:∠CED=∠B=45°,
    ∴A,C,D,E四点共圆,
    ∵ED=EA,
    ∴∠ACE=∠ECD=∠BCD=30°,设BH=DH=x,则CH=x,
    ∵BC=,
    ∴x+x=,
    ∴x=.
    ∴BD=x=-1.
    如图2中,当AD=AE时,同法可证:∠ACD=∠ACE,
    ∵∠BCD=∠DCE,
    ∴∠BCD=2∠ACD,
    ∴∠BCD=60°,设BH=DH=x,则CH=x,
    ∵BC=,
    ∴x+x=,
    ∴x=,
    ∴BD=x=3-.
    综上所述,满足条件的BD的值为-1或3-.
    故答案为:-1或3-.
    本题考查翻折变换,等腰直角三角形的性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
    15、原不等式组的解集为2≤x<1,表示见解析.
    【解析】
    先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.
    【详解】
    解:解不等式1x+1>5(x﹣1),得:x<1,解不等式x﹣6≥,得:x≥2,在同一条数轴上表示不等式的解集为:
    所以原不等式组的解集为2≤x<1.
    本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    16、D(2,5),E(-2,0),F(3,0)
    【解析】
    首先确定A、B、C三点向右平移3个单位后对应点位置,然后再连接即可.
    【详解】
    解:如图所示:△DEF是△ABC向右平移两个单位所得,
    ∴点D,E,F的坐标分别为:D(2,5),E(-2,0),F(3,0).
    此题主要考查了作图--平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
    17、(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=-t2+t-.
    【解析】
    (1)由勾股定理得出AB=,由△ABC的面积得出AC•BC=AB•CD,即可得出CD的长;
    (2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可.
    (3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PHYN,如图4所示,②当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.
    【详解】
    (1)∵∠ACB=90°,AC=8,BC=1,
    ∴AB=,
    ∵S△ABC=AC•BC=AB•CD,
    ∴AC•BC=AB•CD,即:8×1=10×CD,
    ∴CD=;
    (2)在Rt△ADC中,AD=,BD=AB-AD=10-=,
    当点N在线段CD上时,如图1所示:
    ∵矩形PQMN,PQ总保持与AC垂直,
    ∴PN∥AC,
    ∴∠NPD=∠CAD,
    ∵∠PDN=∠ADC,
    ∴△PDN∽△ADC,
    ∴,即:,
    解得:PD=,
    ∴t=AD-PD=,
    当点Q在线段CD上时,如图2所示:
    ∵PQ总保持与AC垂直,
    ∴PQ∥BC,△DPQ∽△DBC,
    ∴,即:,
    解得:DP= ,
    ∴t=AD+DP=,
    ∴当矩形PQMN与线段CD有公共点时,t的取值范围为≤t≤;
    (3)当Q在AC上时,如图3所示:
    ∵PQ总保持与AC垂直,
    ∴PQ∥BC,△APQ∽△ABC,
    ∴,即:,
    解得:AP= ,
    当0<t<时,重叠部分是矩形PHYN,如图4所示:
    ∵PQ∥BC,
    ∴△APH∽△ABC,
    ∴,即:,
    ∴PH=,
    ∴S=PH•PN=;
    当≤t≤时,重合部分是矩形PQMN,S=PQ•PN=2.
    当<t≤时,如图5中重叠部分是五边形PQMJI,
    S=S矩形PNMQ-S△JIN=2- •(t-)[1-(-t)•]=-t2+t-.
    【点评】
    本题属于四边形综合题,考查了解直角三角形,矩形的性质,相似三角形的判定和性质,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
    18、(1);(2)或
    【解析】
    (1)首先根据一次函数的解析式即可得出A,B的坐标,然后利用勾股定理求出AB的长度,然后根据角平分线的性质得出,再利用即可得出CD的长度,从而求出点C的坐标;
    (3)首先利用平行四边形的性质找出所有可能的M点,然后分情况进行讨论,利用待定系数法即可求解.
    【详解】
    (1)令,则,
    令,则,解得 ,
    ∴,


    过点C作交AB于点D,
    ∵BC平分, ,



    解得 ,

    (2)如图,能与A,B,C构成平行四边形的点有三处:,
    ①点C与在同一直线,是经过点C与AB平行的直线,设其直线的解析式为 ,
    将代入中,
    得,解得 ,
    ∴CM所在的直线的解析式为;
    ②∵四边形是平行四边形,
    ∴ .


    设直线 的解析式为 ,
    将代入解析式中得
    解得
    ∴直线解析式为 ,
    综上所述,CM所在的直线的解析式为或.
    本题主要考查一次函数与几何综合,平行四边形的判定与性质,掌握待定系数法及数形结合是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、且.
    【解析】
    根据二次根式的性质以及分式的意义,分别得出关于的关系式,然后进一步加以计算求解即可.
    【详解】
    根据二次根式的性质以及分式的意义可得:,且,
    ∴且,
    故答案为:且.
    本题主要考查了二次根式的性质与分式的性质,熟练掌握相关概念是解题关键.
    20、6
    【解析】
    此题涉及多边形内角和和外角和定理
    多边形内角和=180(n-2), 外角和=360º
    所以,由题意可得180(n-2)=2×360º
    解得:n=6
    21、5或
    【解析】
    利用分类讨论的思想可知,此题有两种情况:一是当这个直角三角形的两直角边分别为、时;二是当这个直角三角形的一条直角边为,斜边为.然后利用勾股定理即可求得答案.
    【详解】
    当这个直角三角形的两直角边分别为、时,
    则该三角形的斜边的长为:(),
    当这个直角三角形的一条直角边为,斜边为时,
    则该三角形的另一条直角边的长为:().
    故答案为或.
    此题主要考查学生对勾股定理的理解和掌握,注意分类讨论是解题关键.
    22、1
    【解析】
    根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.
    【详解】
    解:∵正方形PQED的面积等于225,
    ∴即PQ2=225,
    ∵正方形PRGF的面积为289,
    ∴PR2=289,
    又△PQR为直角三角形,根据勾股定理得:
    PR2=PQ2+QR2,
    ∴QR2=PR2-PQ2=289-225=1,
    则正方形QMNR的面积为1.
    故答案为:1.
    此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.
    23、96
    【解析】
    试题解析:如图所示,连接AC ,在Rt△ADC中,CD=6,AD=8,则.
    在△ ABC中,AB=26,BC=24,AC=10,则 ,故△ ABC为直角三角形.
    .
    故本题的正确答案应为96.
    二、解答题(本大题共3个小题,共30分)
    24、(1),(2)
    【解析】
    (1)先提公因式,再利用平方差公式即可,(2)移项,利用因式分解的方法求解即可.
    【详解】
    解:(1)

    (2)因为:
    所以:
    所以:
    所以:或
    所以:.
    本题考查因式分解与一元二次方程的解法,熟练掌握因式分解,一元二次方程的解法并选择合适的方法解题是关键.
    25、(1)相等;(2)垂直;(3)见解析
    【解析】
    (1)根据菱形的判定定理即可得到结论;
    (2)根据矩形的判定定理即可得到结论;
    (3)根据三角形的中位线平行于第三边并等于第三边的一半,先判断出AC=BD,又正方形的四个角都是直角,可以得到正方形的邻边互相垂直,然后证出AC与BD垂直,即可得到四边形ABCD满足的条件.
    【详解】
    解:(1)顺次连接对角线相等的四边形的四边中点得到的是菱形;
    (2)顺次连接对角线垂直的四边形的四边中点得到的是矩形;
    (3)如图,已知点E、F、G、H分别为四边形ABCD的边AB、BC、CD、DA的中点,AC=BD且AC⊥BD,
    则四边形EFGH为正方形,
    ∵E、F分别是四边形ABCD的边AB、BC的中点,
    ∴EF∥AC,EF=AC,
    同理,EH∥BD,EH=BD,GF=BD,GH=AC,
    ∵AC=BD,
    ∴EF=EH=GH=GF,
    ∴平行四边形ABCD是菱形.
    ∵AC⊥BD,
    ∴EF⊥EH,
    ∴四边形EFGH是正方形,
    故顺次连接对角线相等且垂直的四边形的四边中点得到的四边形是正方形,
    故答案为:相等,垂直.
    本题考查了中点四边形的判定,以及三角形的中位线定理和矩形的性质,正确证明四边形EFMN是平行四边形是关键.
    26、(1) ;(2)140千米,y乙=300﹣28x ,(0≤x≤);(3)或小时
    【解析】
    (1)由图知,该函数关系在不同的时间里表现出不同的关系,需分段表达,可根据待定系数法列方程,求函数关系式.(2)根据题意求出乙车速度,列出y乙与行驶时间x的函数关系式;(3)联立方程分段求出相遇时间.
    【详解】
    (1)由图象可知,甲车由A到B的速度为300÷3=100千米/时,由B到A的速度为千米/时,
    则当0≤x≤3时:y甲=100x,
    当3≤x≤时:y甲=300﹣80(x﹣3)=﹣80x+540,
    ∴y甲=,
    (2)当x=5时,y甲=﹣80×5+540=140(千米),
    则第5小时时,甲距离A140千米,则乙距离B140千米,则乙的速度为140÷5=28千米/时,
    则y乙=300﹣28x (0≤x≤),
    (3)当0≤x≤3时,
    100x=300﹣28x,
    解得x=.
    当3≤x≤时,
    300﹣28x=﹣80x+540,
    x=.
    ∴甲、乙两车相遇的时间为或小时,
    本题考查了一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答本题.
    题号





    总分
    得分
    相关试卷

    2025届江苏省苏州市立达中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2025届江苏省苏州市立达中学数学九上开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江苏省淮安市凌桥乡初级中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2025届江苏省淮安市凌桥乡初级中学数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖南省芷江县岩桥中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2025届湖南省芷江县岩桥中学数学九上开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map