江苏省苏州市昆山市2025届九年级数学第一学期开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为( )
A.5B.6C.7D.25
2、(4分)如图,把一个含45°角的直角三角尺BEF和个正方形ABCD摆放在起,使三角尺的直角顶点和正方形的顶点B重合,连接DF,DE,M,N分别为DF,EF的中点,连接MA,MN,下列结论错误的是( )
A.∠ADF=∠CDEB.△DEF为等边三角形
C.AM=MND.AM⊥MN
3、(4分)如图,平面直角坐标系中,已知点B,若将△ABO绕点O沿顺时针方向旋转90°后得到△A1B1O,则点B的对应点B1的坐标是( )
A.(3,1)B.(3,2)
C.(1,3)D.(2,3)
4、(4分)若正比例函数y=kx的图象经过点(1,2),则k的值为
A.B.-2C.D.2
5、(4分)已知关于x的一次函数y=kx+2k-3的图象经过原点,则k的值为( )
A.B.C.D.
6、(4分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的数为( )
A.2B.C.D.
7、(4分)若关于x,y的二元一次方程组的解为,一次函数y=kx+b与y=mx+n的图象的交点坐标为( )
A.(1,2)B.(2,1)C.(2,3)D.(1,3)
8、(4分) “”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害,2.5微米即0.0000025米.将0.0000025用科学记数法表示为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知,则的值等于__________.
10、(4分)如图,正方形ABCD的边长为,点E、F分别为边AD、CD上一点,将正方形分别沿BE、BF折叠,点A的对应点M恰好落在BF上,点C的对应点N给好落在BE上,则图中阴影部分的面积为__________;
11、(4分)已知(﹣1,y1)(﹣2,y2)(, y3)都在反比例函数y=﹣的图象上,则y1 、y2 、 y3的大小关系是________ .
12、(4分)如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是________.
13、(4分)因式分解:m2n+2mn2+n3=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)
15、(8分)某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用的材料.
(1)求制作每个甲种边框、乙种边框各用多少米材料?
(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?
16、(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.
(1)求证:四边形CDEF是平行四边形;
(2)求四边形CDEF的周长.
17、(10分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为个单位长度的正方形).
(1)将沿轴方向向左平移个单位,画出平移后得到的;
(2)将绕着点顺时针旋转,画出旋转后得到的.
18、(10分)计算:(-)0+(-4)-2-|-|
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)内角和等于外角和2倍的多边形是__________边形.
20、(4分)直线与直线平行,则__________.
21、(4分)若方程的两根互为相反数,则________.
22、(4分)如图,将绕点按逆时针方向旋转得到,使点落在上,若,则的大小是______°.
23、(4分)要从甲、乙、丙三名学生中选出一名学生参加数学竟赛。对这三名学生进行了10次“数学测试”,经过数据分析,3人的平均成绩均为92分。甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元。
(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?
(2)学校准备购进这两种型号的节能灯共80只,并且A型节能灯的数量不多于B型节能灯的3倍,问如何购买最省钱,说明理由。
25、(10分)计算:(-2)(+1)
26、(12分)如图,△ABC中,∠ACB=90°,D是AB中点,过点B作直线CD的垂线,垂足为E,
求证:∠EBC=∠A.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
解:利用勾股定理可得:,
故选A.
2、B
【解析】
连接DE,先根据直角三角形的性质得出AM=DF,再根据△BEF是等腰直角三角形得出AF=CE,由SAS定理得出△ADF≌△CDE,可得∠ADF=∠CDE ,DE=DF,再根据点M,N分别为DF,EF的中点,得出MN是△EFD的中位线,故MN=DE,MN∥DE,可得AM=MN,由MN∥DE,可得∠FMN=∠FDE,根据三角形外角性质可得∠AMF=2∠ADM,由∠ADM+∠DEC+∠FDE=∠FMN+∠AMF=90°,可得MA⊥MN,只能得到△DEF是等腰三角形,无法得出是等边三角形,据此即可得出结论.
【详解】
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠BAD=∠C=90°,
∵点M是DF的中点,
∴AM=DF,
∵△BEF是等腰直角三角形,
∴BF=BE,
∴AF=CE,
∴△ADF≌△CDE(SAS),
∴∠ADF=∠CDE ,DE=DF,
∵点M,N分别为DF,EF的中点,
∴MN是△EFD的中位线,
∴MN=DE,
∴AM=MN;
∵MN是△EFD的中位线,
∴MN∥DE,
∴∠FMN=∠FDE,
∵AM=MD,
∴∠MAD=∠ADM,
∵∠AMF是△ADM外角,
∴∠AMF=2∠ADM.
又∵∠ADM=∠DEC,
∴∠ADM+∠DEC+∠FDE=∠FMN+∠AMF=90°,
∴MA⊥MN,
∵DE=DF,
∴△DEF是等腰三角形,无法得出是等边三角形,
综上,A、C、D正确,B错误,
故选B.
本题考查了正方形的性质,全等三角形的判定与性质,三角形外角的性质,直角三角形斜边中线性质等,综合性较强,熟练掌握和灵活应用相关知识是解题的关键.
3、D
【解析】
根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.
【详解】
解:△A1B1O如图所示,点B1的坐标是(2,3).
故选D.
本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.
4、D
【解析】
∵正比例函数y=kx的图象经过点(1,1),
∴把点(1,1)代入已知函数解析式,得k=1.故选D.
5、B
【解析】
将原点代入一次函数的解析式中,建立一个关于k的方程,解方程即可得出答案.
【详解】
∵关于x的一次函数y=kx+2k-3的图象经过原点,
∴,
解得 ,
故选:B.
本题主要考查一次函数,掌握一次函数图像上的点符合一次函数的解析式是解题的关键.
6、C
【解析】
在Rt△ABC中利用勾股定理求出AC,继而得出AM的长,结合数轴的知识可得出点M的坐标.
【详解】
解:由题意得,AC===,
∴AM=,
∴点M表示的数为,
故选:C.
此题考查了勾股定理与无理数,属于基础题,利用勾股定理求出AC的长度是解答本题的关键,难度一般.
7、A
【解析】
函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.
【详解】
∵关于x,y的二元一次方程组的解为,
∴一次函数y=kx+b与y=mx+n的图象的交点坐标为(1,2).
故选A.
本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
8、D
【解析】
根据科学计数法的表示方法即可求解.
【详解】
0.0000025=
故选D.
此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
将已知的两式相乘即可得出答案.
【详解】
解:∵
∴
∴的值等于3.
本题主要考查了因式分解的解法:提公因式法.
10、
【解析】
分析:设NE=x,由对称的性质和勾股定理,用x分别表示出ON,OE,OM,在直角△OEN中用勾股定理列方程求x,则可求出△OBE的面积.
详解:连接BO.
∠ABE=∠EBF=∠FBC=30°,AE=1=EM,BE=2AE=2.
∠BNF=90°,∠NEO=60°,∠EON=30°,
设EN=x,则EO=2x,ON=x=OM,
∴OE+OM=2x+x=(2+)x=1.∴x==2-.
∴ON=x=(2-)=2-3.
∴S=2S△BOE=2×(×BE×ON)=2×[×2×(2-3)]=4-6.
故答案为.
点睛:翻折的本质是轴对称,所以注意对称点,找到相等的线段和角,结合勾股定理列方程求出相关的线段后求解.
11、
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.
【详解】
∵反比例函数y=−2x中,k=−2<0,
∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大。
∵−2<−1<0,12>0,
∴点A(−2,y2),B(−1,y1)在第二象限,点C(12,y3)在第四象限,
∴y3
12、
【解析】
解:设CD=x,
根据C′D∥BC,且有C′D=EC,
可得四边形C′DCE是菱形;
即Rt△BC′E中,
AC==10,
EB=x;
故可得BC=x+x =8;
解得x=.
13、n(m+n)1
【解析】
先提公因式n,再利用完全平方公式分解因式即可.
【详解】
解:m1n+1mn1+n3
=n(m1+1mn+n1)
=n(m+n)1.
故答案为:n(m+n)1
此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.
三、解答题(本大题共5个小题,共48分)
14、2.3m
【解析】
根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.
【详解】
在Rt△ABD中,∠BAD=18°,AB=9m,
∴BD=AB×tan18°≈2.92m,
∴CD=BD-BC=2.92-0.5=2.42m,
在Rt△CDE中,∠CDE=72°,CD≈2.42m,
∴CE=CD×sin72°≈2.3m.
答:CE的高为2.3m.
本题考查了解直角三角形的应用,解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.
15、(1)甲框每个2.4米,乙框每个2米;(2)最多可购买甲种边框100个.
【解析】
(1)设每个乙种边框所用材料米,则制作甲盒用(1+20%)x米材料,根据“同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个”,列出方程,即可解答;
(2)设生产甲边框个,则乙边框生产个,再根据“要求制作乙种边框的数量不少于甲种边框数量的2倍”求出y的取值范围,即可解答.
【详解】
解(1)设每个乙种边框所用材料米
则
经检验:是原方程的解,1.2x=2.4,
答:甲框每个2.4米,乙框每个2米.
(2)设生产甲边框个,则乙边框生产个,
则
所以最多可购买甲种边框100个.
此题考查分式方程的应用,一元一次不等式的应用,解题关键在于列出方程.
16、 (1)证明见解析;(2)四边形CDEF的周长为2+2.
【解析】
(1)直接利用三角形中位线定理得出,再利用平行四边形的判定方法得出答案;
(2)利用等边三角形的性质结合平行四边形的性质得出,进而求出答案.
【详解】
(1)证明:、分别为、的中点,
是的中位线,
,
,
四边形是平行四边形;
(2)解:四边形是平行四边形,
,
为的中点,等边的边长是2,
,,,
,
四边形的周长.
此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.
17、(1)见解析;(1)见解析。
【解析】
(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(1)利用网格特点和旋转的性质画出点B、C的对应点B1、C1,从而得到△AB1C1.
【详解】
解:(1)如图,△A1B1C1即为所求;
(1)如图,△AB1C1即为所求.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
18、1
【解析】
先计算0指数幂、负指数幂和绝对值,再根据有理数加减混合运算法则计算即可得到结果.
【详解】
解:原式=
=1+-
=1.
此题考查了实数加减混合运算,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、六
【解析】
设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.
【详解】
解:设多边形有n条边,由题意得:
180(n-2)=360×2,
解得:n=6,
故答案为:六.
本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).
20、
【解析】
根据平行直线的k相同可求解.
【详解】
解:因为直线与直线平行,所以
故答案为:
本题考查了一次函数的图像,当时,直线和直线平行.
21、
【解析】
根据一元二次方程根与系数的关系即可求出答案.
【详解】
∵两根互为相反数,
∴根据韦达定理得:m² - 1 = 0,
解得:m = 1 或 m = -1
当 m = 1 时,方程是 x² + 1 = 0 没有实数根
当 m = -1 时,方程是 x² - 1 = 0 有两个实数根
所以 m = -1
故答案为:-1
本题考查一元二次方程根与系数的关系,x1+x2=,x1x2=,熟练掌握韦达定理并进行检验是否有实数根是解题关键.
22、48°
【解析】
根据旋转得出AC=DC,求出∠CDA,根据三角形内角和定理求出∠ACD,即可求出答案.
【详解】
∵将△ABC绕点C按逆时针方向旋转,得到△DCE,点A的对应点D落在AB边上,
∴AC=DC,
∵∠CAB=66°,
∴∠CDA=66°,
∴∠ACD=180°-∠A-∠CDA=48°,
∴∠BCE=∠ACD=48°,
故答案为:48°.
本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.
23、丙
【解析】
根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答即可.
【详解】
解:因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,
丙的方差最小,所以这10次测试成绩比较稳定的是丙,
故答案为:丙
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、(1)1只A型节能灯的售价为5元,1只B型节能灯的售价为7元;(2)购买60只A型节能灯,20只B型节能灯最省钱,理由见解析
【解析】
(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价y元,根据题意列出方程组,求出方程组的解即可;
(2)设A型节能灯买了a只,则B型节能灯买了(80-a)只,共花费w元,根据题意列出不等式组,求出不等式组的解集即可.
【详解】
解(1)设1只A型节能灯的售价为x元,1只B型节能灯的售价为y元
由题意得:
解得:
答:1只A型节能灯的售价为5元,1只B型节能灯的售价为7元
(2)设购买A型节能灯a个,则购买B型节能灯(80-a)个,总费用为w元
由题意得:a≤3(80-a)
解得a≤60
又∵w=5a+7(80-a)=-2a+560
∴w随a的增大而减小
∴当a取最大值60时,w有最小值
w=-2×60+560=440
即购买60只A型节能灯,20只B型节能灯最省钱
本题考查了解二元一次方程组和一元一次不等式组的应用,能根据题意列出方程组或不等式组是解此题的关键.
25、1
【解析】
先把化简得到原式=2(-1)(+1),然后利用平方差公式计算.
【详解】
解:原式=(2-2)(+1)
=2(-1)(+1)
=2(5-1)
=1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
26、详见解析
【解析】
由直角三角形斜边中线等于斜边的一半可得CD=BD,从而可得∠DCB=∠ABC,再根据直角三角形两锐角互余通过推导即可得出答案.
【详解】
∵∠ACB=90°,
∴∠A+∠ABC=90°,
又∵D是AB中点,
∴CD=BD,
∴∠DCB=∠ABC,
又∵∠E=90°,
∴∠ECB+∠EBC=90°,
∴∠EBC=∠A.
本题考查了直角三角形斜边中线的性质,直角三角形两锐角互余,等腰三角形的性质,熟练掌握和灵活运用相关性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024年江苏省苏州市区数学九上开学调研模拟试题【含答案】: 这是一份2024年江苏省苏州市区数学九上开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省苏州昆山市数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年江苏省苏州昆山市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州市昆山市、太仓市九上数学开学调研试题【含答案】: 这是一份2024-2025学年江苏省苏州市昆山市、太仓市九上数学开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。