终身会员
搜索
    上传资料 赚现金

    江苏省南通市海安市曲塘中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】

    立即下载
    加入资料篮
    江苏省南通市海安市曲塘中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】第1页
    江苏省南通市海安市曲塘中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】第2页
    江苏省南通市海安市曲塘中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南通市海安市曲塘中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】

    展开

    这是一份江苏省南通市海安市曲塘中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若(x+y)3-xy(x+y)=(x+y)·M(x+y≠0),则M是( )
    A.x2+y2 B.x2-xy+y2 C.x2-3xy+y2 D.x2+xy+y2
    2、(4分)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如,,,,,根据这个规律探索可得,第100个点的坐标为
    A.B.C.D.
    3、(4分)下列二次根式中属于最简二次根式的是( )
    A.B.C.D.
    4、(4分)测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( )
    A.0.715×104B.0.715×10﹣4C.7.15×105D.7.15×10﹣5
    5、(4分)如图,四边形中,与不平行,分别是的中点,,,则的长不可能是( )
    A.1.5B.2C.2.5D.3
    6、(4分)若一个多边形的内角和是外角和的5倍,则这个多边形的边数是( )
    A.12B.10C.8D.11
    7、(4分)在,,,高,则BC的长是( )
    A.14B.4C.4或14D.7或13
    8、(4分)对于函数,下列结论正确的是( )
    A.它的图象必经过点(-1,1)B.它的图象不经过第三象限
    C.当时,D.的值随值的增大而增大
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
    10、(4分)若,则=_______________.
    11、(4分)已知.若整数满足.则=_________.
    12、(4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .
    13、(4分)实施素质教育以来,某中学立足于学生的终身发展,大力开发课程资源,在七年级设立六个课外学习小组,下面是七年级学生参加六个学习小组的统计表和扇形统计图,请你根据图表中提供的信息回答下列问题.
    (1)七年级共有学生 人;
    (2)在表格中的空格处填上相应的数字;
    (3)表格中所提供的六个数据的中位数是 ;
    (4)众数是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
    (1)求证:四边形ACDF是平行四边形;
    (2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
    15、(8分)如图,直线的函数解析式为,且与轴交于点,直线经过点、,直线、交于点.
    (1)求直线的函数解析式;
    (2)求的面积;
    (3)在直线上是否存在点,使得面积是面积的倍?如果存在,请求出坐标;如果不存在,请说明理由.
    16、(8分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:米),则d1,d2与t的函数关系如图,试根据图象解决下列问题.
    (1)填空:乙的速度v2=________米/分;
    (2)写出d1与t的函数表达式;
    (3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?
    17、(10分)解下列方程:
    18、(10分)如图,四边形ABCD是正方形,点E是BC边上的点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.
    (1)如图①,当点E是BC边上任一点(不与点B、C重合)时,求证:AE=EF.
    (2)如图②当点E是BC边的延长线上一点时,(1)中的结论还成立吗? (填成立或者不成立).
    (3)当点E是BC边上任一点(不与点B、C重合)时,若已知AE=EF,那么∠AEF的度数是否发生变化?证明你的结论.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠BPN=_____度.
    20、(4分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为_____.
    21、(4分)如果a+b=8,a﹣b=﹣5,则a2﹣b2的值为_____.
    22、(4分)如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是________.
    23、(4分)直角三角形的三边长分别为、、,若,,则__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).
    (1)求该函数的解析式;
    (2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.
    25、(10分)如图,在平面直角坐标系xOy中,一次函y=kx+b的图象经过点A(-2,4),且与正比例函数的图象交于点B(a,2).
    (1)求a的值及一次函数y=kx+b的解析式;
    (2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=-x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;
    (3)直接写出关于x的不等式0<<kx+b的解集.
    26、(12分)先化简,再求值:,其中是方程的解.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】分析:运用提公因式法将等式左边的多项式进行因式分解即可求解.
    详解:(x+y)3-xy(x+y)=(x+y)[ (x+y)2-xy]= (x+y) (x2+xy+y2)= (x+y)·M
    ∴M= x2+xy+y2
    故选D.
    点睛:此题主要考查了提取公因式法的应用以及完全平方公式的应用,正确运用(x+y)2= x2+2xy+y2是解题关键.
    2、D
    【解析】
    从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,依此类推横坐标为n的有n个点题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.
    【详解】
    在横坐标上,第一列有一个点,第二列有2个点第n个有n个点,
    并且奇数列点数对称而偶数列点数y轴上方比下方多一个,
    所以奇数列的坐标为;
    偶数列的坐标为,
    由加法推算可得到第100个点位于第14列自上而下第六行.
    代入上式得,即.
    故选D.
    本题是一道找规律题,主要考查了点的规律.培养学生对坐平面直角坐标系的熟练运用能力是解题的关键.
    3、A
    【解析】
    利用最简二次根式定义判断即可.
    【详解】
    A、,是最简二次根式,符合题意;
    B、,不是最简二次根式,不符合题意;
    C、,不是最简二次根式,不合题意;
    D、,,不是最简二次根式,不合题意.
    故选A.
    本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
    4、D
    【解析】
    0.000 071 5= ,故选D.
    5、D
    【解析】
    连接BD,取BD的中点G,连接MG、NG,根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2MG,DC=2NG,再根据三角形的任意两边之和大于第三边得出MN<(AB+DC),即可得出结果.
    【详解】
    解:如图,连接BD,取BD的中点G,连接MG、NG,
    ∵点M,N分别是AD、BC的中点,
    ∴MG是△ABD的中位线,NG是△BCD的中位线,
    ∴AB=2MG,DC=2NG,
    ∴AB+DC=2(MG+NG),
    由三角形的三边关系,MG+NG>MN,
    ∴AB+DC>2MN,
    ∴MN<(AB+DC),
    ∴MN<3;
    故选:D.
    本题考查了三角形的中位线定理,三角形的三边关系;根据不等关系考虑作辅助线,构造成以MN为一边的三角形是解题的关键.
    6、A
    【解析】
    根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.
    【详解】
    设这个多边形是n边形,
    根据题意得,(n﹣2)•180°=5×360°,
    解得n=1.
    故选:A.
    本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.
    7、C
    【解析】
    分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD−BD.
    【详解】
    解:(1)如图
    锐角△ABC中,AB=15,AC=13,BC边上高AD=12,
    在Rt△ABD中AB=15,AD=12,由勾股定理得:
    BD2=AB2−AD2=152−122=81,
    ∴BD=9,
    在Rt△ACD中AC=13,AD=12,由勾股定理得
    CD2=AC2−AD2=132−122=25,
    ∴CD=5,
    ∴BC的长为BD+DC=9+5=11;
    (2)如图
    钝角△ABC中,AB=15,AC=13,BC边上高AD=12,
    在Rt△ABD中AB=15,AD=12,由勾股定理得:
    BD2=AB2−AD2=152−122=81,
    ∴BD=9,
    在Rt△ACD中AC=13,AD=12,由勾股定理得:
    CD2=AC2−AD2=132−122=25,
    ∴CD=5,
    ∴BC的长为DC−BD=9−5=1.
    故BC长为11或1.
    故选:C.
    本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    8、B
    【解析】
    将x=-1代入一次函数解析式求出y值即可得出A错误;由一次函数解析式结合一次函数系数与图象的关系即可得出B正确;求出一次函数与x轴的交点即可得出C错误;由一次函数一次项系数k=-3<0即可得出D不正确.此题得解.
    【详解】
    A、令y=-3x+4中x=-1,则y=8,
    ∴该函数的图象不经过点(-1,1),即A错误;
    B、∵在y=-3x+4中k=-3<0,b=4>0,
    ∴该函数图象经过第一、二、四象限,即B正确;
    C、令y=-3x+4中y=0,则-3x+4=0,解得:x=,
    ∴该函数的图象与x轴的交点坐标为(,0),
    ∴当x<时,y>0,故C错误;
    D、∵在y=-3x+4中k=-3<0,
    ∴y的值随x的值的增大而减小,即D不正确.
    故选:B.
    本题考查了一次函数的性质以及一次函数图象与系数的关系,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    解:这组数据的平均数为2,
    有 (2+2+0-2+x+2)=2,
    可求得x=2.
    将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
    其平均数即中位数是(2+2)÷2=2.
    故答案是:2.
    10、36
    【解析】
    【分析】根据积的乘方的运算法则即可得.
    【详解】因为,
    所以=·=4×9=36,
    故答案为36.
    【点睛】本题考查了幂的乘方和积的乘方的应用,用了整体代入思想.
    11、2
    【解析】
    根据题意可知m-3≤0,被开方数是非负数列不等式组可得m的取值,又根据,表示m的值代入不等式的解集中可得结论.
    【详解】
    解:,

    解得:.
    ∵为整数,



    故答案为:2;
    本题考查了二次根式的性质和估算、不等式组的解法,有难度,能正确表示m的值是本题的关键.
    12、15.6
    【解析】
    试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,
    最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),
    则这六个整点时气温的中位数是15.6℃.
    考点:折线统计图;中位数
    13、(1)360;(2)1,108,20%;(3)63;(4)1.
    【解析】
    解:(1)读图可知:有10%的学生即36人参加科技学习小组,
    故七年级共有学生:36÷10%=360(人).
    故答案为360;
    (2)统计图中美术占:1﹣30%﹣20%﹣10%﹣15%﹣5%=20%,
    参加美术学习小组的有:
    360×(1﹣30%﹣20%﹣10%﹣15%﹣5%)=360×20%=1(人),
    奥数小组的有360×30%=108(人);
    故答案为1,108,20%;
    (3)(4)从小到大排列:18,36,54,1,1,108
    故众数是1,中位数=(54+1)÷2=63;
    故答案为63,1.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)BC=2CD,理由见解析.
    【解析】
    分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
    (2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
    详解:(1)∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠FAE=∠CDE,
    ∵E是AD的中点,
    ∴AE=DE,
    又∵∠FEA=∠CED,
    ∴△FAE≌△CDE,
    ∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形;
    (2)BC=2CD.
    证明:∵CF平分∠BCD,
    ∴∠DCE=45°,
    ∵∠CDE=90°,
    ∴△CDE是等腰直角三角形,
    ∴CD=DE,
    ∵E是AD的中点,
    ∴AD=2CD,
    ∵AD=BC,
    ∴BC=2CD.
    点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
    15、(1);(2)3;(3)在直线上存在点或,使得面积是面积的倍.
    【解析】
    (1)根据点A、B的坐标利用待定系数法即可求出直线l2的函数解析式;
    (2)令y=-2x+4=0求出x值,即可得出点D的坐标,联立两直线解析式成方程组,解方程组即可得出点C的坐标,再根据三角形的面积即可得出结论;
    (3)假设存在点P,使得△ADP面积是△ADC面积的1.5倍,根据两三角形面积间的关系|yP|=1.5|yC|=3,再根据一次函数图象上点的坐标特征即可求出点P的坐标.
    【详解】
    解:(1)设直线的函数解析式为,
    将、代入,
    ,解得:,
    直线的函数解析式为.
    (2)联立两直线解析式成方程组,
    ,解得:,
    点的坐标为.
    当时,,
    点的坐标为.

    (3)假设存在.
    面积是面积的倍,

    当时,,
    此时点的坐标为;
    当时,,
    此时点的坐标为.
    综上所述:在直线上存在点或,使得面积是面积的倍.
    故答案为(1);(2)3;(3)在直线上存在点或,使得面积是面积的倍.
    本题考查两条直线相交或平行问题、一次函数图象上点的坐标特征以及待定系数法求一次函数解析式,根据给定点的坐标利用待定系数法求出函数解析式是解题的关键.
    16、(2)40;(2)当0≤t≤2时,d2=﹣60t+60;当2<t≤3时,d2=60t﹣60;(3)当0≤t<2.5时,两遥控车的信号不会产生相互干扰.
    【解析】
    (2)根据路程与时间的关系,可得答案;
    (2)根据甲的速度是乙的速度的2.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;
    (3)根据两车的距离,可得不等式,根据解不等式,可得答案.
    【详解】
    (2)乙的速度v2=220÷3=40(米/分),
    (2)v2=2.5v2=2.5×40=60(米/分),
    60÷60=2(分钟),a=2,
    d2=;
    (3)d2=40t,
    当0≤t<2时,d2-d2>20,
    即-60t+60+40t>20,
    解得0≤t<2.5,
    ∵0≤t<2,
    ∴当0≤t<2时,两遥控车的信号不会产生相互干扰;
    当2≤t≤3时,d2-d2>20,
    即40t-(60t-60)>20,
    当2≤t<时,两遥控车的信号不会产生相互干扰
    综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.
    17、x1=5,x2=1.
    【解析】
    移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    x2-10x+25=2(x-5),
    (x-5)2-2(x-5)=0,
    (x-5)(x-5-2)=0,
    x-5=0,x-5-2=0,
    x1=5,x2=1.
    本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
    18、(1)见解析;(2)成立,理由见解析;(3)∠AEF=90°不发生变化.理由见解析.
    【解析】
    (1)在AB上取点G,使得BG=BE,连接EG,根据已知条件利用ASA判定△AGE≌△ECF,因为全等三角形的对应边相等,所以AE=EF;
    (2)在BA的延长线上取一点G,使AG=CE,连接EG,根据已知利用ASA判定△AGE≌△ECF,因为全等三角形的对应边相等,所以AE=EF;
    (3)在BA边取一点G,使BG=BE,连接EG.作AP⊥EG,EQ⊥FC,先证AGP≌△ECQ得AP=EQ,再证Rt△AEP≌Rt△EFQ得∠AEP=∠EFQ,∠BAE=∠CEF,结合∠AEB+∠BAE=90°知∠AEB+∠CEF=90°,从而得出答案.
    【详解】
    (1)证明:在BA边取一点G,使BG=BE,连接EG,
    ∵四边形ABCD是正方形,
    ∴∠B=90°,BA=BC,∠DCM═90°,
    ∴BA-BG=BC-BE,
    即 AG=CE.
    ∵∠AEF=90°,∠B=90°,
    ∴∠AEB+∠CEF=90°,∠AEB+∠BAE=90°,
    ∴∠CEF=∠BAE.
    ∵BG=BE,CF平分∠DCM,
    ∴∠BGE=∠FCM=45°,
    ∴∠AGE=∠ECF=135°,
    ∴△AGE≌△ECF(ASA),
    ∴AE=EF.
    (2)成立,
    理由:在BA的延长线上取点G,使得AG=CE,连接EG.
    ∵四边形ABCD为正方形,AG=CE,
    ∴∠B=90°,BG=BE,
    ∴△BEG为等腰直角三角形,
    ∴∠G=45°,
    又∵CF为正方形的外角平分线,
    ∴∠ECF=45°,
    ∴∠G=∠ECF=45°,
    ∵∠AEF=90°,
    ∴∠FEM=90°-∠AEB,
    又∵∠BAE=90°-∠AEB,
    ∴∠FEM=∠BAE,
    ∴∠GAE=∠CEF,
    在△AGE和△ECF中,
    ∵,
    ∴△AGE≌△ECF(ASA),
    ∴AE=EF.
    故答案为:成立.
    (3)∠AEF=90°不发生变化.
    理由如下:在BA边取一点G,使BG=BE,连接EG.分别过点A、E作AP⊥EG,EQ⊥FC,垂足分别为点P、Q,
    ∴∠APG=∠EQC=90°,
    由(1)中知,AG=CE,∠AGE=∠ECF=135°,
    ∴∠AGP=∠ECQ=45°,
    ∴△AGP≌△ECQ(AAS),
    ∴AP=EQ,
    ∴Rt△AEP≌Rt△EFQ(HL),
    ∴∠AEP=∠EFQ,
    ∴∠BAE=∠CEF,
    又∵∠AEB+∠BAE=90°,
    ∴∠AEB+∠CEF=90°,
    ∴∠AEF=90°.
    此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据折叠的性质知:可知:BN=BP,再根据∠BNP=90°即可求得∠BPN的值.
    【详解】
    根据折叠的性质知:BP=BC,
    ∴BN=BC=BP,
    ∵∠BNP=90°,
    ∴∠BPN=1°,
    故答案为:1.
    本题考查了正方形的性质、翻折变换(折叠问题)等知识,熟练掌握相关的性质及定理是解题的关键.
    20、1
    【解析】
    试题分析:∵直角△ABC中,AC=,∠B=60°,
    ∴AB==1,BC==2,
    又∵AD=AB,∠B=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB=1,
    ∴CD=BC﹣BD=2﹣1=1.
    故答案是:1.
    考点:旋转的性质.
    21、-1
    【解析】
    根据平方差公式求出即可.
    【详解】
    解:∵a+b=8,a﹣b=﹣5,
    ∴a2﹣b2
    =(a+b)(a﹣b)),
    =8×(﹣5),
    =﹣1,
    故答案为:﹣1.
    本题主要考查了乘法公式的应用,准确应用平方差公式和完全平方公式是解题的关键.
    22、
    【解析】
    解:设CD=x,
    根据C′D∥BC,且有C′D=EC,
    可得四边形C′DCE是菱形;
    即Rt△BC′E中,
    AC==10,

    EB=x;
    故可得BC=x+x =8;
    解得x=.
    23、或5
    【解析】
    根据斜边分类讨论,然后利用勾股定理分别求出c的值即可.
    【详解】
    解:①若b是斜边长
    根据勾股定理可得:
    ②若c是斜边长
    根据勾股定理可得:
    综上所述:或5
    故答案为:或5
    此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=-2x+1;(2)2;点P的坐标为(0,1).
    【解析】试题分析:(1)、将A、B两点的坐标代入解析式求出k和b的值,从而得出函数解析式;(2)、首先得出点C关于y轴的对称点为C′,然后得出点D的坐标,根据C′、D的坐标求出直线C′D的解析式,从而求出点P的坐标,然后根据勾股定理得出C′D的长度,从而得出答案.
    试题解析:(1)将点A、B的坐标代入y=kx+b并计算得k=-2,b=1.
    ∴解析式为:y=-2x+1;
    (2)存在一点P,使PC+PD最小.
    ∵0(0,0),A(2,0),且C为AO的中点,
    ∴点C的坐标为(1,0), 则C关于y轴的对称点为C′(-1,0),
    又∵B(0,1),A(2,0)且D为AB的中点, ∴点D的坐标为(1,2),
    连接C′D,设C′D的解析式为y=kx+b,
    有, 解得, ∴y=x+1是DC′的解析式, ∵x=0,∴y=1,
    即P(0,1). ∵PC+PD的最小值=C′D,
    ∴由勾股定理得C′D=2.
    25、(1)y=2x+8;(2)m=;(3)-3<x<1
    【解析】
    (1)先确定B的坐标,然后根据待定系数法求解析式;
    (2)先求得C的坐标,然后根据题意求得平移后的直线的解析式,把C的坐标代入平移后的直线的解析式,即可求得M的值;
    (3)找出直线y=-x落在y=kx+b的下方且在x轴上方的部分对应的x的取值范围即可.
    【详解】
    解:(1)∵正比例函数的图象经过点B(a,2),
    ∴2=-a,解得,a=-3,
    ∴B(-3,2),
    ∵一次函数y=kx+b的图象经过点A(-2,4),B(-3,2),
    ∴,解得,
    ∴一次函数y=kx+b的解析式为y=2x+8;
    (2)∵一次函数y=2x+8的图象与x轴交于点C,
    ∴C(-4,1),
    ∵正比例函数y=-x的图象向下平移m(m>1)个单位长度后经过点C,
    ∴平移后的函数的解析式为y=-x-m,
    ∴1=-×(-4)-m,
    解得m=;
    (3)∵一次函y=kx+b与正比例函数y=-x的图象交于点B(-3,2),
    且一次函数y=2x+8的图象与x轴交于点C(-4,1),
    ∴关于x的不等式1<-x<kx+b的解集是-3<x<1.
    考查了两条直线相交或平行的问题,解题关键是掌握理解待定系数法、直线上点的坐标特征、直线的平移和一次函数和一元一次不等式的关系.
    26、.
    【解析】
    【分析】括号内先通分进行分式的加减运算,再进行分式的乘除运算,解方程求出x的值,然后选择使分式有意义的值代入代简后的结果进行计算即可得.
    【详解】原式=÷
    = •
    =,
    解方程(x+1)2=4得x1=1, x2=-3 ,
    当a=1时,原分式无意义,
    所以,当a=-3时,原式=.
    【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
    题号





    总分
    得分
    学习小组
    体育
    美术
    科技
    音乐
    写作
    奥数
    人数
    72
    36
    54
    18
    学习小组
    体育
    美术
    科技
    音乐
    写作
    奥数
    人数
    1
    1
    36
    54
    18
    108

    相关试卷

    江苏省南通市海安市曲塘镇2024年数学九年级第一学期开学统考模拟试题【含答案】:

    这是一份江苏省南通市海安市曲塘镇2024年数学九年级第一学期开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省南通市海安市曲塘中学数学九年级第一学期期末质量跟踪监视模拟试题含答案:

    这是一份2023-2024学年江苏省南通市海安市曲塘中学数学九年级第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知点P,抛物线y=2等内容,欢迎下载使用。

    江苏省南通市海安市曲塘中学2023-2024学年八上数学期末调研试题含答案:

    这是一份江苏省南通市海安市曲塘中学2023-2024学年八上数学期末调研试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map