终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省南通市海安市2024年数学九上开学调研模拟试题【含答案】

    立即下载
    加入资料篮
    江苏省南通市海安市2024年数学九上开学调研模拟试题【含答案】第1页
    江苏省南通市海安市2024年数学九上开学调研模拟试题【含答案】第2页
    江苏省南通市海安市2024年数学九上开学调研模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南通市海安市2024年数学九上开学调研模拟试题【含答案】

    展开

    这是一份江苏省南通市海安市2024年数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分) (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
    A.2B.C.5D.
    2、(4分)已知m= ,则( )
    A.4<m<5B. 6<m<7C.5<m<6D.7<m<8
    3、(4分)使有意义的x的取值范围是( ▲ )
    A.x>-1B.x≥-1C.x≠-1D.x≤-1
    4、(4分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示.则每分的出水量是( )L.
    A.5B.3.75C.4D.2.5
    5、(4分)下列运算中正确的是( )
    A.B.
    C.D.
    6、(4分)如图,A、B、C、D四点都在⊙O上,若OCAB,AOC70,则圆周角D的度数等于( )
    A.70B.50C.35D.20
    7、(4分)下列根式中属于最简二次根式的是( )
    A.B.C.D.
    8、(4分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起销售,若要想销售收入保持不变,则售价大概应定为每千克( )
    A.7元B.6.8元C.7.5元D.8.6元
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一次函数y=-x+4的图像是由正比例函数 ____________ 的图像向 ___ (填“上”或 “下”)平移 __ 个单位长度得到的一条直线.
    10、(4分)已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.
    11、(4分)若关于的方程有增根,则的值是________.
    12、(4分)若,则的值为________.
    13、(4分)如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,□ABCD在平面直角坐标系xOy中,已知点、、、,点G是对角线AC的中点,过点G的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.
    (1)求点D的坐标和的值;
    (2)如图2,当直线EF交x轴于点,且时,求点P的坐标;
    (3)如图3,当直线EF交x轴于点时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.

    图1 图2 图3
    15、(8分)解不等式组:,并将解集在数轴上表示出来,且写出它的整数解.
    16、(8分)先化简,再求值:(1﹣)÷.其中a从0,1,2,﹣1中选取.
    17、(10分)某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
    设购买银杏树苗x棵,到两家购买所需费用分别为y甲元、y乙元
    (1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为 元,若都在乙家购买所需费用为 元;
    (2)当x>1000时,分别求出y甲、y乙与x之间的函数关系式;
    (3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么?
    18、(10分)如图,已知.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题:
    (1)作的平分线、交于点;
    (2)作线段的垂直平分线,交于点,交于点,连接;
    (3)写出你所作出的图形中的所有等腰三角形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,﹣3,a4,a5的平均数和中位数分别是_____,_____.
    20、(4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.
    21、(4分)如图,在菱形中,,,点在上,以为对角线的所有中,最小的值是______.
    22、(4分)如图,在中,分别以点为圆心,大于的长为半径画弧,两弧交于点,作直线交于点,交于点,连接.若,连接点和的中点,则的长为_______.
    23、(4分)如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,直线l是一次函数的图象求:
    这个函数的解析式;
    当时,y的值.
    25、(10分)小林为探索函数的图象与性经历了如下过程
    (1)列表:根据表中的取值,求出对应的值,将空白处填写完整
    (2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象.
    (3)若函数的图象与的图象交于点,,且为正整数),则的值是_____.
    26、(12分)知y+3与5x+4成正比例,当x=1时,y=—18,
    (1)求y关于x的函数关系。
    (2)若点(m,—8)在此图像上,求m的值。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
    【详解】
    根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
    故选B
    本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
    2、C
    【解析】
    根据被开方数越大算术平方根越大,可得答案.
    【详解】
    ∵ << ,
    ∴5<m<6,
    故选:C.
    本题考查了估算无理数的大小,解题关键在于掌握运算法则.
    3、B
    【解析】
    分析:让被开方数为非负数列式求值即可.
    解答:解:由题意得:x+1≥0,
    解得x≥-1.
    故选B.
    4、B
    【解析】
    观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量-每分钟增加的水量”即可算出结论.
    【详解】
    每分钟的进水量为:20÷4=5(升),
    每分钟的出水量为:5-(30-20)÷(12-4)=3.75(升).
    故选B.
    本题考查了一次函数的应用,解题的关键是根据函数图象找出数据结合数量关系列式计算.
    5、B
    【解析】
    根据二次根式的乘除法则求出每个式子的值,再判断即可.
    【详解】
    解: A. ==42,故本选项不符合题意;
    B. ,故本选项,符合题意;
    C. ,故本选项不符合题意;
    D. =3,故本选项不符合题意;
    故选:B.
    本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.
    6、C
    【解析】
    由垂径定理将已知角转化,再用圆周角定理求解.
    【详解】
    解:因为OC⊥AB,
    由垂径定理可知,
    所以,∠COB=∠COA=70°,
    根据圆周角定理,得
    故选:C.
    本题综合考查了垂径定理和圆周角的求法及性质.解答这类题要灵活运用所学知识解答问题,熟练掌握圆的性质是关键.
    7、A
    【解析】
    根据最简二次根式的定义选择即可.
    【详解】
    、是最简二次根式,故本选项正确;
    、不是最简二次根式,故本选项错误;
    、不是最简二次根式,故本选项错误;
    、不是最简二次根式,故本选项错误.
    故选:.
    本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.
    8、B
    【解析】
    根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.
    【详解】
    解:售价应定为: (元);故选:B
    本题考查的是加权平均数的求法,本题易出现的错误是对加权平均数的理解不正确,而求6,7,8这三个数的平均数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=-x, 上, 4
    【解析】
    分析:根据函数图象平移的规则“上加下减”,即可得出将y=-x的函数图象向上平移4个单位即可得到函数y=-x+4的图象,此题得解.
    详解:根据图形平移的规则“上加下减”,即可得出:
    将y=−x的函数图象向上平移4个单位即可得到函数y=−x+4的图象.
    故答案为:y=−x;上;4.
    点睛:本题主要考查了一次函数图像与几何变换.关键在于牢记函数图像的平移规则.
    10、2
    【解析】
    设y=k(x+1),把x=1,y=2代入,求的k,确定x,y的关系式,然后把x=-1,代入解析式求对应的函数值即可.
    【详解】
    解:∵y与x+1成正比例,
    ∴设y=k(x+1),
    ∵x=1时,y=2,
    ∴2=k×2,即k=1,
    所以y=x+1.
    则当x=-1时,y=-1+1=2.
    故答案为2.
    本题考查了正比例函数关系式为:y=kx(k≠2)),只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.
    11、.
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.
    【详解】
    解:方程两边都乘x-2,得
    ∵方程有增根,
    ∴最简公分母x-2=0,即增根是x=2,
    把x=2代入整式方程,得.
    故答案为:.
    考查了分式方程的增根,增根问题可按如下步骤进行:
    ①根据最简公分母确定增根的值;
    ②化分式方程为整式方程;
    ③把增根代入整式方程即可求得相关字母的值.
    12、
    【解析】
    根据比例设a=2k,b=3k,然后代入比例式进行计算即可得解.
    【详解】
    ∵,
    ∴设a=2k,b=3k,
    ∴ .
    故答案为:
    此题考查比例的性质,掌握运算法则是解题关键
    13、6
    【解析】
    先证明△AOE≌△COF,Rt△BFO≌Rt△BFC,再证明△OBC、△BEF是等边三角形即可求出答案.
    【详解】
    如图,连接BO,
    ∵四边形ABCD是矩形,
    ∴DC∥AB,∠DCB=90°
    ∴∠FCO=∠EAO
    在△AOE与△COF中,
    ∴△AOE≌△COF
    ∴OE=OF,OA=OC
    ∵BF=BE
    ∴BO⊥EF,∠BOF=90°
    ∵∠BEF=2∠BAC=∠CAB+∠AOE
    ∴∠EAO=∠EOA,
    ∴EA=EO=OF=FC=2
    在Rt△BFO与Rt△BFC中
    ∴Rt△BFO≌Rt△BFC
    ∴BO=BC
    在Rt△ABC中,∵AO=OC,
    ∴BO=AO=OC=BC
    ∴△BOC是等边三角形
    ∴∠BCO=60°,∠BAC=30°
    ∴∠FEB=2∠CAB=60°,
    ∵BE=BF
    ∴EB=EF=4
    ∴AB=AE+EB=2+4=6,
    故答案为6.
    本题考查的是全等三角形的性质与判定和等边三角形的判定与性质,能够充分调动所学知识是解题本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)(2,−2),7;(2)点P的坐标为(,−)或(−,);(3)点P的坐标为(3,0)或(−1,2)或(,−)或(−,).
    【解析】
    (1)根据平行线的性质可求点D的坐标,根据重心的定义可得S四边形BEFC=S▱ABCD从而求解;
    (2)分两种情况:①点P在AC左边,②点P在AC右边,进行讨论即可求解;
    (3)先作出图形,再根据矩形的性质即可求解.
    【详解】
    解:(1)∵▱ABCD在平面直角坐标系xOy中,点A(−1,0)、B(0,4)、C(3,2),
    ∴点D的坐标为(2,−2),
    ∴S▱ABCD=6×4−×1×4−×3×2−×1×4−×3×2=14,
    ∵点G是对角线AC的中点,
    ∴S四边形BEFC=S▱ABCD=7;
    (2)∵点G是对角线AC的中点,
    ∴G(1,1),
    设直线GH的解析式为y=kx+b,
    则,
    解得,
    ∴直线GH的解析式为y=−x+;
    ①点P在AC右边,
    S△ACH=×6×2=6,
    ∵S△PAC=S四边形BEFC,
    1+4×=,
    当x=时,y=−×+=−,
    ∴P(,−);
    ②点P在AC左边,
    由中点坐标公式可得P(−,);
    综上所述,点P的坐标为(,−)或(−,);
    (3)如图,
    设直线GK的解析式为y=kx+b,则,
    解得,
    则直线GK的解析式为y=−x+,
    CP⊥AP时,点P的坐标为(3,0)或(−1,2);
    CP⊥AC时,直线AC的解析式为y=x+,
    直线CP的解析式为y=−2x+8,
    故点P的坐标为(,−);
    AP⊥AC时,
    同理可得点P的坐标为(−,);
    综上所述,点P的坐标为(3,0)或(−1,2)或(,−)或(−,).
    本题考查四边形的综合题、矩形的性质、三角形和四边形的面积等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用方程的思想思考问题,属于中考压轴题.
    15、不等式组的解集为;整数解为.
    【解析】
    分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,继而可得不等式组的解集.
    【详解】
    解:解不等式得:,
    解不等式得:,
    解集在数轴上表示为:
    不等式组的解集为;
    ∴整数解为.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    16、,
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=﹣1代入计算即可求出值.
    【详解】
    原式,
    当a=﹣1时,原式=.
    此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    17、 (1)610000; 1;(2)当x>1000时,y甲=700x+50000,y乙=600x+200000,x为正整数;(3)当0≤x≤500时或x=1500时,到两家购买所需费用一样;当500<x<1500时,到甲家购买合算;当x>1500时,到乙家购买合算.
    【解析】
    (1)、(2)依据表格提供的数据,然后结合公式总价单价数量进行计算即可;
    (3)分为,,三种情况进行讨论即可.
    【详解】
    解:(1)甲家购买所要费用;
    都在乙家购买所需费用.
    故答案为:610000;1.
    (2)当时,,
    ,为正整数,
    (3)当时,到两家购买所需费用一样;
    当时,甲家有优惠而乙家无优惠,所以到甲家购买合算;
    又.
    当时,,解得,当时,到两家购买所需费用一样;
    当时,,解得,当时,到甲家购买合算;
    当时,,解得,当时,到乙家购买合算.
    综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.
    本题主要考查的是一次函数的应用,明确题目中涉及的数量关系是解题的关键.
    18、(1)见解析;(2)见解析;(3)
    【解析】
    (1)利用尺规作出∠ABC的角平分线即可.
    (2)利用尺规作出线段BD的垂直平分线即可.
    (3)根据等腰三角形的定义判断即可.
    【详解】
    (1)射线BD即为所求.
    (2)直线EF即为所求.
    (3)△BDE,△BDF,△BEF是等腰三角形.
    本题考查作图-复杂作图,线段的垂直平分线,角平分线的定义等知识,解题的关键是熟练掌握基本知识.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 ,
    【解析】
    根据五个数的平均数为m,可以表示五个数的和为5m,后来加上一个数﹣3,那么六个数的和为5m﹣3,因此六个数的平均数为(5m﹣3)÷6,将六个数从小到大排列后,处在第3、4位的两个数的平均数为(a4+a3)÷1,因此中位数是(a4+a3)÷1.
    【详解】
    a1,a1,a3,a4,a5的平均数是m,则a1+a1+a3+a4+a5=5m,
    数据a1,a1,a3,﹣3,a4,a5的平均数为(a1+a1+a3﹣3+a4+a5)÷6=,
    数据a1,a1,a3,﹣3,a4,a5按照从小到大排列为:﹣3, a5,a4,a3,a1, a1,处在第3、4位的数据的平均数为 ,
    故答案为:,.
    考查平均数、中位数的意义及计算方法,解题关键在于灵活应用平均数的逆运算.
    20、1.
    【解析】
    在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.
    【详解】
    由题意可得,=0.03,
    解得,n=1,
    故估计n大约是1,
    故答案为1.
    本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
    21、
    【解析】
    根据题意可得当时,EF的值最小,利用直角三角形的勾股即可解的EF的长.
    【详解】
    根据题意可得当时,EF的值最小

    ,AD=AB=
    EF=
    本题主要考查最短直线问题,关键在于判断当时,EF的值最小.
    22、1
    【解析】
    由作图可知,MN为AB的垂直平分线,根据线段垂直平分线的性质得到AF=BF=6,且AE=BE,由线段中点的定义得到EG为△ABC的中位线,从而可得出结果.
    【详解】
    解:∵由作图可知,MN为AB的垂直平分线,
    ∴AE=BE,=6,
    ∴.
    而是的中位线,
    ∴.
    故答案为:1.
    本题考查了基本作图-作已知线段的垂直平分线:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.同时也考查了线段垂直平分线的性质以及三角形的中位线的性质.
    23、1
    【解析】
    由于∠C=90°,∠ABC=60°,可以得到∠A=10°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=10°,BD=AD=6,再由10°角所对的直角边等于斜边的一半即可求出结果.
    【详解】
    ∵∠C=90°,∠ABC=60°,
    ∴∠A=10°.
    ∵BD平分∠ABC,
    ∴∠CBD=∠ABD=∠A=10°,
    ∴BD=AD=6,
    ∴CD=BD=6×=1.
    故答案为1.
    本题考查了直角三角形的性质、含10°角的直角三角形、等腰三角形的判定以及角的平分线的性质.解题的关键是熟练掌握有关性质和定理.
    二、解答题(本大题共3个小题,共30分)
    24、(1).(2)3.
    【解析】
    由一次函数的图象经过,两点,代入解析式可得,解得,,因此一次函数关系式为:,
    根据一次函数关系式,把,代入可得:.
    【详解】
    解:一次函数的图象经过,两点,
    依题意得,
    解得,,
    ,
    当时,.
    本题主要考查待定系数法求一次函数关系式,解决本题的关键是要熟练掌握待定系数法求一次函数关系式.
    25、(1)3,1.5;(1)见解析;(3)1.
    【解析】
    (1)当时,,即可求解;
    (1)描点描绘出以下图象,
    (3)在(1)图象基础上,画出,两个函数交点为,,即可求解.
    【详解】
    解:(1)当时,,同理当时,,
    故答案为3,1.5;
    (1)描点描绘出以下图象,
    (3)在(1)图象基础上,画出,
    两个函数交点为,,
    即,
    故答案为1.
    本题考查的是反比例函数综合运用,涉及到一次函数基本性质、复杂函数的作图,此类题目通常在作图的基础上,依据图上点和线之间的关系求解.
    26、 (1) y=x;
    (2) m=.
    【解析】
    (1)设y+3=k(5x+4),把x=1,y=-18代入求出k的值,进而可得出y与x的函数关系式;
    (2)直接把点(m,-8)代入(1)中一次函数的解析式即可.
    【详解】
    (1)∵y+3与5x+4成正比例,
    ∴设y+3=k(5x+4),
    ∵当x=1时,y=−18,
    ∴−18+3=k(5+4),解得k=,
    ∴y关于x的函数关系式为: (5x+4)=y+3,即y=x;
    (2)∵点(m,−8)在此图象上,
    ∴−8=m,解得m=.
    本题考查一次函数,解题的关键是掌握待定系数法求解析式.
    题号





    总分
    得分
    批阅人


    购树苗数量
    销售单价
    购树苗数量
    销售单价
    不超过500棵时
    800元/棵
    不超过1000棵时
    800元/棵
    超过500棵的部分
    700元/棵
    超过1000棵的部分
    600元/棵
    2.5
    3
    3.5
    4
    4.5
    5
    6
    ____
    2
    ____
    1.2
    1

    相关试卷

    江苏省南通市海安市八校联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】:

    这是一份江苏省南通市海安市八校联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省海安八校联考2024-2025学年九上数学开学复习检测模拟试题【含答案】:

    这是一份江苏省海安八校联考2024-2025学年九上数学开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2025届江苏省南通市港闸区南通市北城中学九上数学开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map