江苏省南京市上元中学2025届数学九上开学综合测试试题【含答案】
展开
这是一份江苏省南京市上元中学2025届数学九上开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于数据-4,1,2,-1,2,下面结果中,错误的是( )
A.中位数为1B.方差为26C.众数为2D.平均数为0
2、(4分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是( )
A.A城和B城相距300km
B.甲先出发,乙先到达
C.甲车的速度为60km/h,乙车的速度为100km/h
D.6:00~7:30乙在甲前,7:30甲追上乙,7:30~9:00甲在乙前
3、(4分)下列函数中,一定是一次函数的是
A.B.C.D.
4、(4分)下面各式计算正确的是( )
A.(a5)2=a7B.a8÷a2=a6
C.3a3•2a3=6a9D.(a+b)2=a2+b2
5、(4分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )
A.140米B.150米C.160米D.240米
6、(4分)已知三角形的三边为2、3、4,该三角形的面积为( )
A.B.C.D.
7、(4分)如图,在Rt△ABC中,∠A=90°,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,若AE=1,则BE的长为( )
A.2B.C.D.1
8、(4分)若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为( )
A.2005B.2003C.﹣2005D.4010
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.
10、(4分)已知直角三角形的周长为14,斜边上的中线长为3. 则直角三角形的面积为________.
11、(4分)函数中,自变量x的取值范围是 ▲ .
12、(4分)一次函数与轴的交点坐标为__________.
13、(4分)已知,则_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
(1)求每部型手机和型手机的销售利润;
(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
①求关于的函数关系式;
②该手机店购进型、型手机各多少部,才能使销售总利润最大?
(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
15、(8分)解不等式.
16、(8分)如图所示,的顶点在的网格中的格点上.
(1)画出绕点A逆时针旋转得到的;
(2)在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为中心对称图形.
17、(10分)如图,在矩形中,、相交于点,过点作的平行线交的延长线于点.
(1)求证:.
(2)过点作于点,并延长交于点,连接.若,,求四边形的周长.
18、(10分)先化简,再求值:,其中是满足不等式组的整数解.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在直角坐标系中,A、B两点的坐标分别为(0,8)和(6,0),将一根橡皮筋两端固定在A、B两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形AOBC,则橡皮筋被拉长了_____个单位长度.
20、(4分)在Rt△ABC中,∠B=90°,∠C=30°,AB=2,则BC的长为______.
21、(4分)比较大小:_____1.(填“>”、“=”或“<”)
22、(4分)抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160 cm和165 cm之间的学生大约有_______人.
23、(4分)一次跳远中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有____人.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知△ABC三个顶点的坐标分别为A(-2,-1),B(-3,-3),C(-1,-3).
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)若△A2B2C2是由△ABC平移而得,且点A2的坐标为(-4,4),请写出B2和C2的坐标.
25、(10分)阅读理解题
在平面直角坐标系中,点到直线的距离公式为:,
例如,求点到直线的距离.
解:由直线知:
所以到直线的距离为:
根据以上材料,解决下列问题:
(1)求点到直线的距离.
(2)若点到直线的距离为,求实数的值.
26、(12分) (1)计算:﹣+×
(2)解方程:3x(x+4)=2(x+4)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;
B. , ,故不正确;
C.∵众数是2,故正确;
D.,故正确;
故选B.
2、D
【解析】
根据整个行程中,汽车离开A城的距离y与时刻t的对应关系,即可得到正确结论.
【详解】
解:A、由题可得,A,B两城相距300千米,故A选项正确;
B、由图可得,甲车先出发,乙车先到达B城,故B选项正确;
C、甲车的平均速度为:300÷(10﹣5)=60(千米/时);乙车的平均速度为:300÷(9﹣6)=100(千米/时),故C选项正确;
D、6:00~7:30甲在乙前,7:30乙追上甲,7:30~9:00乙在甲前,故D选项错误;
故选:D.
此题主要考查了看函数图象,以及一次函数的应用,关键是正确从函数图象中得到正确的信息.
3、A
【解析】
根据一次函数的定义,逐一分析四个选项,此题得解.
【详解】
解:、,
是一次函数,符合题意;
、自变量的次数为,
不是一次函数,不符合题意;
、自变量的次数为2,
不是一次函数,不符合题意;
、当时,函数为常数函数,不是一次函数,不符合题意.
故选:.
本题考查了一次函数的定义,牢记一次函数的定义是解题的关键.
4、B
【解析】
根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;完全平方公式对各选项分析判断后利用排除法.
【详解】
A、(a5)2=a10,故本选项错误;
B、a8÷a2=a6,故本选项正确;
C、3a3•2a3=6a6 ,故本选项错误;
D、(a+b)2=a2+2ab+b2,故本选项错误.
故选B.
本题考查了幂的乘方的性质,同底数幂的除法的性质,完全平方公式,熟记各运算性质与完全平方公式结构是解题的关键.
5、B
【解析】
由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.
【详解】
已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.
本题考查多边形内角与外角,熟记公式是关键.
6、D
【解析】
如图所示:过点B作BD⊥AC于点D,利用勾股定理得出BD的长,进而利用三角形面积求法得出答案.
【详解】
如图所示:过点B作BD⊥AC于点D,
设BD=x,CD=y,
则AD=4-y,
在Rt△BDC中,x2+y2=32,
在Rt△ABD中,x2+(4-y)2=22,
故9+16-8y=4,解得:y= ,
∴x2+()2=9,解得:x=
故三角形的面积为:
故选:D.
本题考查勾股定理的应用,根据题意得出三角形的高的值是解题关键.
7、A
【解析】
求出∠ACB,根据线段垂直平分线的性质求出BE=CE,推出∠BCE=∠B=30°,求出∠ACE,即可求出CE的长,即可求得答案.
【详解】
∵在Rt△ABC中,∠A=90°,∠B=30°,
∴∠ACB=60°,
∵DE垂直平分斜边BC,
∴BE=CE,
∴∠BCE=∠B=30°,
∴∠ACE=60°﹣30°=30°,
在Rt△ACE中,∠A=90°,∠ACE=30°,AE=1,
∴CE=2AE=2,
∴BE=CE=2,
故选A.
本题考查了三角形内角和定理,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出CE的长.
8、B
【解析】
根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=-,x1x2= .而α2+3α+β=α2+2α+(α+β),即可求解.
【详解】
α,β是方程x2+2x−2005=0的两个实数根,则有α+β=−2.
α是方程x2+2x−2005=0的根,得α2+2α−2005=0,即:α2+2α=2005.
所以α2+3α+β=α2+2α+(α+β)=α2+2α−2=2005−2=2003,
故选B.
此题考查根与系数的关系,一元二次方程的解,解题关键在于掌握运算法则.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.
【详解】
平分 ,
.
平分 ,
.
.
同理可得:
;
......
本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.
10、2
【解析】
由∠ACB=90°,CD是斜边上的中线,求出AB=1,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=31推出AC•BC=14,根据SAC•BC即可求出答案.
【详解】
如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=1.
∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=31,∴(AC+BC)2﹣2AC•BC=31,∴AC•BC=14,∴SAC•BC=2.
故答案为:2.
本题考查了对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解答此题的关键.
11、.
【解析】
试题分析:由已知:x-2≠0,解得x≠2;
考点:自变量的取值范围.
12、
【解析】
令y=0,即可求出交点坐标.
【详解】
令y=0,得x=1,
故一次函数与x轴的交点为
故填
此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.
13、
【解析】
先对变形,得到b=,然后将b=代入化简计算即可.
【详解】
解:由,b=
则
故答案为-2.
本题考查了已知等式,求另一代数式值的问题;其解答关键在于对代数式进行变形,寻找它们之间的联系
三、解答题(本大题共5个小题,共48分)
14、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
【解析】
(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;
(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;
②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;
(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.
【详解】
解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.
根据题意,得,
解得
答:每部型手机的销售利润为元,每部型手机的销售利润为元.
(2)①根据题意,得,即.
②根据题意,得,解得.
,,
随的增大而减小.
为正整数,
当时,取最大值,.
即手机店购进部型手机和部型手机的销售利润最大.
(3)根据题意,得.
即,.
①当时,随的增大而减小,
当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;
②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;
③当时,,随的增大而增大,
当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.
本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.
15、.
【解析】
先去分母再移项,系数化为1,即可得到答案.
【详解】
将不等式两边同乘以2得,
,
解得.
本题考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的求解方法.
16、(1)见解析;(2)见解析.
【解析】
(1)由题意可知旋转中心、旋转角、旋转方向,根据旋转的画图方法作图即可;
(2)如图有三种情况,构造平行四边形即可.
【详解】
解:(1)如图即为所求
(2)如图,D、D’、D’’均为所求.
本题考查了图形的旋转及中心对称图形,熟练掌握作旋转图形的方法及中心对称图形的定义是解题的关键.
17、(1)证明见解析;(2).
【解析】
(1)根据两组对边分别平行且的四边形是平行四边形判断出四边形BEAD是平行四边形,再根据平行四边形对边相等和矩形对边相等即可得出结论;
(2)根据矩形的对角线相等且互相平分及直角三角形斜边上的中线等于斜边的一半可得OB=OC=OG,利用勾股定理求出BC,CO的长.证明BF为△CEG的中位线,再由三角形中位线定理可得EG=2BF,最后根据四边形的周长公式列式计算即可得解.
【详解】
(1)∵AE∥DB,AD∥EB,∴四边形BEAD是平行四边形,∴BE=DA.
∵四边形ABCD是矩形,∴BC=AD,∴BE=BC;
(2)∵四边形ABCD是矩形,∴OA=OB=OCAC.
∵AE∥DB,CF⊥BO,∴CG⊥AE,∴GO为Rt△CGA斜边的中线,∴GOAC=OB,∴BO+OG=BD.
∵CF=3,BF=1,∴BE=BC=.
设CO=x,则FO=BO-BF=x-1.在Rt△CFO中,∵,∴,解得:x=7.5,∴BO+OG=BD=2x=2.
∵OG=CO,OF⊥CG,∴FG=CF=3.
∵CB=BE,∴BF为△CEG的中位线,∴EG=2BF=3,∴四边形BOGE的周长=BO+OG+EG+EB=2+3+=.
本题考查了平行四边形的判定与性质,矩形的性质,直角三角形斜边上的中线等于斜边的一半以及三角形中位线定理,熟记各性质并利用勾股定理列出方程是解题的关键.
18、化简得: 求值得:.
【解析】
先解不等式组,求得不等式组的整数解,后利用分式混合运算化简分式,把使分式有意义的字母的值代入求值即可.
【详解】
解:因为,解得:<,
因为为整数,所以 .
原式
因为,所以取,
所以:上式.
本题考查分式的化简求值,不等式组的解法,特别要注意求值时学生容易忽视分式有意义的条件.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据已知条件得到OA=8,OB=6,根据勾股定理得到,根据矩形的性质即可得到结论.
【详解】
解:∵A、B两点的坐标分别为(0,8)和(6,0),
∴OA=8,OB=6,
∴,
∵四边形AOBC是矩形,
∴AC+BC=OB+OA=11,
∴11﹣10=1,
∴橡皮筋被拉长了1个单位长度,
故答案为:1.
本题考查了矩形的性质,坐标与图形性质,熟练掌握矩形的性质是解题的关键.
20、
【解析】
由在直角三角形中,30°角所对的边是斜边的一半得AC=2AB,再用运用勾股定理,易得BC的值.或直接用三角函数的定义计算.
【详解】
解:∵∠B=90°,∠C=30°,AB=2,
∴AC=2AB=4,
由勾股定理得:
故答案为:.
本题考查了解直角三角形,要熟练掌握好边角之间的关系、勾股定理及三角函数的定义.
21、>.
【解析】
【分析】先求出1=,再比较即可.
【详解】∵12=9<10,
∴>1,
故答案为:>.
【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.
22、1
【解析】
根据频率直方图的意义,由用样本估计总体的方法可得样本中160~165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数
【详解】
解:由题意可知:150名样本中160~165的人数为30人,则其频率为,
则1500名学生中身高位于160cm至165cm之间大约有1500×=1人.
故答案为1.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好的考查了用样本来估计总体的数学思想.
23、20
【解析】
根据频率的计算公式即可得到答案.
【详解】
解:
所以可得参加比赛的人数为20人.
故答案为20.
本题主要考查频率的计算公式,这是数据统计的重点知识,必须掌握.
二、解答题(本大题共3个小题,共30分)
24、(1)图见详解,点A1、B1、C1的坐标分别为(2,-1),(3,-3),(1,-3);(2)点B2的坐标为(-5,2),C2的坐标为(-3,2).
【解析】
(1)根据关于y轴对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可;
(2)利用点A和点A2的坐标特征确定平移的方向与距离,从而写出B2和C2的坐标.
【详解】
解:(1)如图,△A1B1C1为所作,
点A1、B1、C1的坐标分别为(2,-1),(3,-3),(1,-3);
(2)∵点A(-2,-1)平移后的对应点A2的坐标为(-4,4),
∴将△ABC先向上平移5个单位长度,再向左平移2个单位长度得到△A2B2C2,
∴点B2的坐标为(-5,2),C2的坐标为(-3,2).
本题考查了平移的性质、作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.
25、(1)1;(2)1或-3.
【解析】
(1)根据点到直线的距离公式求解即可;
(2)根据点到直线的距离公式,列出方程即可解决问题.
【详解】
解:由直线知:A=3,B=-4,C=-5,
∴点到直线的距离为:
d=;
(2)由点到直线的距离公式得:
∴|1+C|=2
解得:C=1或-3.
点睛:本题考查点到直线的距离公式的运用,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.
26、 (1);(2)x1=,x2=﹣1.
【解析】
(1)先化简二次根式,二次根式乘法运算,然后计算加减法;
(2)先移项,再用因式分解即可.
【详解】
解:(1)原式=﹣+2=;
(2)由原方程,得
(3x﹣2)(x+1)=0,
所以3x﹣2=0或x+1=0,
解得x1=,x2=﹣1.
本题考查的是二次根式的混合运算和方程求解,熟练掌握因式分解和化简是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份江苏省南京市致远中学2024年九上数学开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南京市秦淮区四校联考2024年数学九上开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南京市金陵中学2025届九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。