江苏省南京市第十八中学2024年九上数学开学综合测试试题【含答案】
展开
这是一份江苏省南京市第十八中学2024年九上数学开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,点(﹣2,﹣a2﹣3)一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)下列图形既是中心对称图形,又是轴对称图形的是( )
A.B.C.D.
3、(4分)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=40°,则∠BDC=( )
A.40°B.80°C.100°D.120°
4、(4分) “学习强国”的英语“Learningpwer”中,字母“n”出现的频率是( )
A.1B.C.D.2
5、(4分)已知a<b,则下列不等式不成立的是( )
A.a+2<b+2B.2a<2bC.D.﹣2a>﹣2b
6、(4分)在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE,请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:
小青:OE=OF;小何:四边形DFBE是正方形;
小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF,
这四位同学写出的结论中不正确的是( )
A.小青B.小何C.小夏D.小雨
7、(4分)对于数据:80,88,85,85,83,83,1.下列说法中错误的有( )
①这组数据的平均数是 1;②这组数据的众数是 85;③这组数据的中位数是 1;④这组数据的方差是 2.
A.1 个B.2 个C.3 个D.4 个
8、(4分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为51和38,则△EDF的面积为( )
A.6.5B.5.5C.8D.13
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,时,则的值是__________.
10、(4分)若关于x的方程-2=会产生增根,则k的值为________
11、(4分)如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.
12、(4分)如图,直线经过点,则不等式的解集为________________.
13、(4分)如图,在的两边上分别截取、,使;分别以点、为圆心,长为半径作弧,两弧交于点,连接、.若,四边形的面积为.则的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在□ABCD中,∠BAD的平分线交CD于点E,连接BE并延长交AD延长线于点F,若AB=AF.
(1)求证:点D是AF的中点;
(2)若∠F=60°,CD=6,求□ABCD的面积.
15、(8分)如图,在平面直角坐标系中,己知三个顶点的坐标分別是,,.以点为位似中心,将缩小为原来的,得到,图形的对应点为与,与,与.
(1)写出所有满足条件的点的坐标_________________;
(2)请在轴左侧画出满足条件的.
16、(8分)随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前的,假设从去年开始,连续三年(去年,今年,明年)该电子产品的价格下降率都相同.
(1)求这种电子产品的价格在这三年中的平均下降率.
(2)若两年前这种电子产品的价格是元,请预测明年该电子产品的价格.
17、(10分)某服装制造厂要在开学前赶制3000套服装,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?
18、(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4, 1),B(-1,3),C(-1,1)
(1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△;平移△ABC,若A对应的点坐标为(-4,-5),画出△;
(2)若△绕某一点旋转可以得到△,直接写出旋转中心坐标是__________;
(3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点G为正方形ABCD内一点,AB=AG,∠AGB=70°,联结DG,那么∠BGD=_____度.
20、(4分)如图,直线交轴于点,交轴于点,是直线上的一个动点,过点作轴于点,轴于点,的长的最小值为__________.
21、(4分)将直线y=2x-3平移,使之经过点(1,4),则平移后的直线是____.
22、(4分)如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则的度数等于___________.
23、(4分)如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则EF=____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,Rt△ABO的顶点A是双曲线y1=与直线y2=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.
(1)求这两个函数的解析式;
(2)求△AOC的面积.
(3)直接写出使y1>y2成立的x的取值范围
25、(10分)暑假期间,两名教师计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费请你帮他们选择一下,选哪家旅行社比较合算.
26、(12分)如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),
(1)请画出把△ABO向下平移5个单位后得到的△A1B1O1的图形;
(2)请画出将△ABO绕点O顺时针旋转90°后得到的△A2B2O2,并写出点A的对应点A2的坐标。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据直角坐标系的坐标特点即可判断.
【详解】
解:∵a2+3≥3>0,
∴﹣a2﹣3<0,
∴点(﹣2,﹣a2﹣3)一定在第三象限.
故选C.
此题主要考查直角坐标系点的特点,解题的关键是熟知各象限坐标特点.
2、D
【解析】
根据中心对称图形与轴对称图形的定义依次分析各选项即可判断.
【详解】
A只是轴对称图形,B只是中心对称图形,C只是轴对称图形,D既是中心对称图形,又是轴对称图形,故选D.
本题考查中心对称图形与轴对称图形的定义,解题的关键是知道轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、B
【解析】
根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.
【详解】
解:∵DE是线段AC的垂直平分线,
∴DA=DC,
∴∠DCA=∠A=40°,
∴∠BDC=∠DCA+∠A=80°,故选:B.
本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
4、C
【解析】
直接利用频率的定义分析得出答案.
【详解】
∵“学习强国”的英语“Learningpwer”中,一共有13个字母,n有2个,
∴字母“n”出现的频率是:
故选:C.
此题主要考查了频率的求法,正确把握定义是解题关键.
5、C
【解析】
根据不等式的基本性质对各选项进行逐一分析即可.
【详解】
A、将a<b两边都加上2可得a+2<b+2,此不等式成立;
B、将a<b两边都乘以2可得2a<2b,此不等式成立;
C、将a<b两边都除以2可得,此选项不等式不成立;
D、将a<b两边都乘以-2可得-2a>-2b,此不等式成立;
故选C.
本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.
6、B
【解析】
根据平行四边形的性质可得OA=OC,CD∥AB,从而得∠ACE=∠CAF,可判断出小雨的结论正确,证明△EOC≌△FOA,可得OE=OF,判断出小青的结论正确,由△EOC≌△FOA继而可得出S四边形AFED=S四边形FBCE,判断出小夏的结论正确,由△EOC≌△FOA可得EC=AF,继而可得出四边形DFBE是平行四边形,从而可判断出四边形DFBE是菱形,无法判断是正方形,判断出故小何的结论错误即可.
【详解】
∵四边形ABCD是平行四边形,
∴OA=OC,CD∥AB,
∴∠ACE=∠CAF,(故小雨的结论正确),
在△EOC和FOA中,
,
∴△EOC≌△FOA,
∴OE=OF(故小青的结论正确),
∴S△EOC=S△AOF,
∴S四边形AFED=S△ADC=S平行四边形ABCD,
∴S四边形AFED=S四边形FBCE,(故小夏的结论正确),
∵△EOC≌△FOA,
∴EC=AF,∵CD=AB,
∴DE=FB,DE∥FB,
∴四边形DFBE是平行四边形,
∵OD=OB,EO⊥DB,
∴ED=EB,
∴四边形DFBE是菱形,无法判断是正方形,(故小何的结论错误),
故选B.
本题考查了平行四边形的性质、菱形的判定、全等三角形的判定与性质、正方形的判定等,综合性较强,熟练掌握各相关性质与定理是解题的关键.
7、B
【解析】
由平均数公式可得这组数据的平均数为1;
在这组数据中83出现了2次,85出现了2次,其他数据均出现了1次,所以众数是83和85;将这组数据从小到大排列为:80、83、83、1、85、85、88,可得其中位数是1;
其方差为,
故选B.
8、A
【解析】
过点D作DH⊥AC于H,利用角平分线的性质得到DF=DH,将三角形EDF的面积转化为三角形DGH的面积来求.
【详解】
如图,过点D作DH⊥AC于H,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,
∴Rt△DEF≌Rt△DGH(HL),
∴S△DEF=S△DGH,
∵△ADG和△AED的面积分别为51和38,
∴△EDF的面积=.
故选A.
本题考查的知识点是角平分线的性质及全等三角形的判定及性质,解题关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
利用平方差公式求解即可求得答案.
【详解】
解:当,时,
.
故答案为:1.
此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用是解此题的关键.
10、
【解析】
根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.
【详解】
∵关于x的方程-2=会产生增根,
∴x-3=0,
∴x=3.
把-2=的两边都乘以x-3得,
x-2(x-3)=-k,
把x=3代入,得
3=-k,
∴k=-3.
故答案为:-3.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
11、
【解析】
先根据正方形的性质和轴对称的性质找出使PF+PE取得最小值的点,然后根据勾股定理求解即可.
【详解】
∵正方形ABCD是轴对称图形,AC是一条对称轴,
∴点F关于AC的对称点在线段AD上,设为点G,连结EG与AC交于点P,则PF+PE的最小值为EG的长,
∵AB=4,AF=2,∴AG=AF=2,
∴EG=.
故答案为.
本题考查了正方形的性质,轴对称之最短路径问题及勾股定理,根据轴对称的性质确定出点P的位置是解答本题的关键.
12、.
【解析】
根据一次函数与一元一次不等式的关系进行解答即可.
【详解】
解:∵直线y=kx+b(k≠0)经过一、三象限且与y轴交于正半轴,
∴k>0,b>0,
∴y随x的增大而增大,y随x的减小而减小,
∵直线y=kx+b(k≠0)经过点P(-1,2),
∴当y
相关试卷
这是一份2025届江苏省南京市文昌中学九上数学开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省南京市树人中学九上数学开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省南京市建邺区数学九上开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。