江苏省南京市东山外国语学校2024-2025学年九年级数学第一学期开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列条件,不能判断四边形是平行四边形的是( )
A.,B.,
C.,D.,
2、(4分)若分式的值为0,则x等于( )
A.﹣lB.﹣1或2C.﹣1或1D.1
3、(4分)矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )
A.3B.C.2或3D.3或
4、(4分)将100个数据分成①-⑧组,如下表所示:
那么第④组的频率为( )
A.0.24B.0.26C.24D.26
5、(4分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
DG=DE在以上4个结论中,正确的共有( )个
A.1个B.2 个C.3 个D.4个
6、(4分)如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )
A.林老师家距超市1.5千米
B.林老师在书店停留了30分钟
C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的
D.林老师从书店到家的平均速度是10千米/时
7、(4分)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是( )海里.
A.B.C.50D.25
8、(4分)下列式子从左到右变形错误的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一只不透明的袋子中装有4个小球,分别标有数字2,3,4,,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和.记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:
试估计出现“和为7”的概率为________.
10、(4分)如图,在矩形ABCD中,对角线AC、BD交于点O,∠AOD=120°,对角线AC=4,则BC的长为_____.
11、(4分)直线与轴的交点坐标为__.
12、(4分)已知y+2和x成正比例,当x=2时,y=4,则y与x的函数关系式是______________.
13、(4分)写出一个经过二、四象限的正比例函数_________________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?
15、(8分)已知直线 y=kx+b(k≠0)过点 F(0,1),与抛物线 相交于B、C 两点
(1)如图 1,当点 C 的横坐标为 1 时,求直线 BC 的解析式;
(2)在(1)的条件下,点 M 是直线 BC 上一动点,过点 M 作 y 轴的平行线,与抛物线交于点 D, 是否存在这样的点 M,使得以 M、D、O、F 为顶点的四边形为平行四边形?若存在,求出点 M 的坐标;若不存在,请说明理由;
(3)如图 2,设 B(m,n)(m<0),过点 E(0,-1)的直线 l∥x 轴,BR⊥l 于 R,CS⊥l 于 S,连接 FR、FS.试判断△ RFS 的形状,并说明理由.
16、(8分)如图,点的纵坐标为,过点的一次函数的图象与正比例函数的图象相交于点.
(1)求该一次函数的解析式.
(2)若该一次函数的图象与轴交于点,求的面积.
17、(10分)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录内9个时间点冷柜中的温度(℃)随时间变化情况,制成下表:
(1)如图,在直角坐标系中,描出上表数据对应的点,并画出当时温度随时间变化的函数图象;
(2)通过图表分析发现,冷柜中的温度是时间的函数.
①当时,写出符合表中数据的函数解析式;
②当时,写出符合表中数据的函数解析式;
(3)当前冷柜的温度℃时,冷柜继续工作36分钟,此时冷柜中的温度是多少?
18、(10分)已知a=,b=,
(1)求ab,a+b的值;
(2)求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,EF是△BCD的中位线,且EF=4,则AD=___.
20、(4分)式子在实数范围内有意义,则 x 的取值范围是_______ .
21、(4分)某小组7名同学的英语口试成绩(满分30分)依次为,,,,,,,则这组数据的中位数是_______.
22、(4分)如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的值是__________.
23、(4分)若二次根式有意义,则x的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为1,且△AOH的面积为1.
(1)求正比例函数的解析式;
(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.
25、(10分)甲、乙两人参加射箭比赛,两人各射了5箭,他们的成绩(单位:环)统计如下表.
(1)分别计算甲、乙两人射箭比赛的平均成绩;
(2)你认为哪个人的射箭成绩比较稳定?为什么?
26、(12分)解不等式组:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据平行四边形的判定方法一一判断即可.
【详解】
解:A、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;
B、由AB=CD,BC=AD可以判断四边形ABCD是平行四边形;
C、由∠A=∠C,AD∥BC,可以推出∠B=∠D,可以判断四边形ABCD是平行四边形;
D、由AB∥CD,∠A=∠B不可以判断四边形ABCD是平行四边形;
故选:D.
本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.
2、D
【解析】
直接利用分式的值为零则分子为零分母不为零进而得出答案.
【详解】
解:∵分式的值为0,
∴|x|﹣1=0,x﹣2≠0,x+1≠0,
解得:x=1.
故选D.
此题主要考查了分式有意义的条件,正确把握定义是解题关键.
3、D
【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得x=,
∴BE=;
②当点B′落在AD边上时,如图2所示.
此时ABEB′为正方形,
∴BE=AB=1.
综上所述,BE的长为或1.
故选D.
本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
4、A
【解析】
先根据数据总数和表格中的数据,可以计算得到第④组的频数;再根据频率=频数÷总数进行计算.
【详解】
解:根据表格中的数据,得第④组的频数为100−(4+8+12+1+18+7+3)=1,
所以其频率为1÷100=0.1.
故选:A.
本题考查频数、频率的计算方法.用到的知识点:各组的频数之和等于数据总数;频率=频数÷总数.
5、C
【解析】
【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
∴△ADG≌△FDG,①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12﹣x,
由勾股定理得:EG2=BE2+BG2,
即:(x+6)2=62+(12﹣x)2,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,②正确;
∵△ADG≌△FDG,△DCE≌△DFE,
∴∠ADG=∠FDG,∠FDE=∠CDE
∴∠GDE==45〫.③正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
∴正确说法是①②③
故选:C
【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
6、D
【解析】
分析:
根据图象中的数据信息进行分析判断即可.
详解:
A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;
B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;
C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;
D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.
故选D.
点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.
7、D
【解析】
根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.
【详解】
根据题意,∠1=∠2=30°,
∵∠ACD=60°,
∴∠ACB=30°+60°=90°,
∴∠CBA=75°﹣30°=45°,
∴∠A=45°,
∴AB=AC.
∵BC=50×0.5=25,
∴AC=BC=25(海里).
故选D.
考点:1等腰直角三角形;2方位角.
8、C
【解析】
根据分式的性质逐个判断即可.
【详解】
解: ,
故选:C.
本题主要考查分式的基本性质,分式的分子分母同时乘以一个不为0的数,不会改变分式的大小.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、0.33
【解析】
由于大量试验中“和为7”出现的频数稳定在0.3附近,据图表,可估计“和为7”出现的概率为3.1,3.2,3.3等均可.
【详解】
出现和为7的概率是:0.33(或0.31,0.32,0.34均正确);
故答案为:0.33
此题考查利用频率估计概率,解题关键在于看懂图中数据
10、2.
【解析】
由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AB,然后根据勾股定理即可求出BC.
【详解】
∵四边形ABCD是矩形,
∴∠ABC=90°,OA=AC,OB=BD,AC=BD,
∴OA=OB,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴OA=AB,
∴AC=2OA=4,
∴AB=2
∴BC=;
故答案为:2.
本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
11、,
【解析】
令y=0,求出x的值即可得出结论
【详解】
,
当时,,得,
即直线与轴的交点坐标为:,,
故答案为:,
此题考查一次函数图象上点的坐标特征,解题关键在于令y=0
12、y=3x-1
【解析】
解:设函数解析式为y+1=kx,
∴1k=4+1,
解得:k=3,
∴y+1=3x,
即y=3x-1.
13、y=-2x …(答案不唯一)
【解析】
解:答案不唯一,只要k<0即可.如:y=-2x ….故答案为y=-2x …(答案不唯一).
三、解答题(本大题共5个小题,共48分)
14、是,理由见解析.
【解析】
先在△ABC中,由∠B=90°,可得△ABC为直角三角形;根据勾股定理得出AC2=AB2+BC2=8,那么AD2+AC2=9=DC2,由勾股定理的逆定理可得△ACD也为直角三角形.
【详解】
都是直角三角形.理由如下:
连结AC.
在△ABC中,∵∠B=90°,
∴△ABC为直角三角形;
∴AC2=AB2+BC2=8,
又∵AD2+AC2=1+8=9,而DC2=9,
∴AC2+AD2=DC2,
∴△ACD也为直角三角形.
考点:1.勾股定理的逆定理;2.勾股定理.
15、(1);(2)存在;M点坐标为:(-3,),,;(3)△RFS是直角三角形;证明见详解.
【解析】
(1)首先求出C的坐标,然后由C、F两点用待定系数法求解析式即可;
(2)因为DM∥OF,要使以M、D、O、F为顶点的四边形为平行四边形,则DM=OF,设M(x,),则D(x,x2),表示出DM,分类讨论列方程求解;
(3)根据勾股定理求出BR=BF,再由BR∥EF得到∠RFE=∠BFR,同理可得∠EFS=∠CFS,所以∠RFS=∠BFC=90°,所以△RFS是直角三角形.
【详解】
解:(1)因为点C在抛物线上,所以C(1,),
又∵直线BC过C、F两点,
故得方程组:
解之,得,
所以直线BC的解析式为:;
(2)存在;理由如下:
要使以M、D、O、F为顶点的四边形为平行四边形,则MD=OF,如图1所示,
设M(x,),则D(x,x2),
∵MD∥y轴,
∴,
由MD=OF,可得:;
①当时,
解得:x1=0(舍)或x1=-3,
所以M(-3,);
②当时,
解得:,
所以M或M,
综上所述,存在这样的点M,使以M、D、O、F为顶点的四边形为平行四边形,
M点坐标为:(-3,),,;
(3)△RFS是直角三角形;理由如下:
过点F作FT⊥BR于点T,如图2所示,
∵点B(m,n)在抛物线上,
∴m2=4n,
在Rt△BTF中,
,
∵n>0,
∴BF=n+1,
又∵BR=n+1,
∴BF=BR.
∴∠BRF=∠BFR,
又∵BR⊥l,EF⊥l,
∴BR∥EF,
∴∠BRF=∠RFE,
∴∠RFE=∠BFR,
同理可得∠EFS=∠CFS,
∴∠RFS=∠BFC=90°,
∴△RFS是直角三角形.
本题主要考查了待定系数法求解析式,平行四边形的判定,平行线的性质,勾股定理以及分类讨论和数形结合等数学思想.解题的关键是掌握待定系数法求解析式,以及学会运用分类讨论和数形结合等数学思想去解题.
16、(1);(2).
【解析】
(1)利用正比例函数,求得点B坐标,再利用待定系数法即可求得一次函数解析式;
(2)利用一次函数解析式求得点D坐标,即可求的面积.
【详解】
(1)把代入中,得,
所以点的坐标为,
设一次函数的解析式为,
把和代入,得,解得,
所以一次函数的解析式是;
(2)在中,令,则,
解得,则的坐标是,
所以.
本题为考查一次函数基础题,考点涉及利用待定系数法求一次函数解析式以及求一次函数与坐标轴交点坐标,熟练掌握一次函数相关知识点是解答本题的关键.
17、(1)见详解;(2)①y=;②y=-4x+1;(3)-4°.
【解析】
(1)根据表格内容描点、画图、连线即可.
(2)①由x·y=-80,即可得出当4≤x<20时,y关于x的函数解析式;
②根据点(20,-4)、(21,-8),利用待定系数法求出y关于x的函数解析式,再代入其它点的坐标验证即可.
(3)根据表格数据,找出冷柜的工作周期为20分钟,由此即可得出答案.
【详解】
(1)如图所示:
(2)①根据图象可知,图象接近反比例函数图象的一部分,设y=,过点(8,-10),
∴k=-80,
∴y=(4≤x<20).
②根据图象可知,图象接近直线,设y=kx+b,过点(20,-4),(21,-8),
∴y=-4x+1.
(3)∵因温度的变化,20分钟一个周期,
∴36=20+16
∴冷柜连续工作36分钟时,在反比例函数变化范围内,故温度为-4°.
本题主要考查一次函数和反比例的解析式,以及应用.
18、(1)ab=1,a+b=2;(2)1.
【解析】
(1)直接利用平方差公式分别化简各式进而计算得出答案;
(2)利用(1)中所求,结合分母有理化的概念得出有理化因式,进而化简得出答案.
【详解】
(1)∵
∴
(2)
=1.
此题主要考查了分母有理化,正确得出有理化因式是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
利用三角形中位线定理求出BC,再利用平行四边形的对边相等即可解决问题.
【详解】
∵EF是△DBC的中位线,
∴BC=2EF=1,
∵四边形ABCD是平行四边形,
∴AD=BC=1,
故答案为1.
此题考查平行四边形的性质和三角形中位线定理,解题关键在于利用中位线的性质计算出BC的长度
20、x≥1
【解析】
直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.
【详解】
由题意可得:x﹣1≥0,
解得:x≥1,
故答案为:x≥1.
本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.
21、1
【解析】
对于中位数,先将数据按从小到大的顺序排列,找出最中间的一个数(或最中间的两个数)即可.
【详解】
这组数据从小到大排列顺序为:23,25,25,1,27,29,30,中间一个数为1,所以这组数据的中位数为1.
故答案为:1
考核知识点:中位数.理解中位数的定义是关键.
22、1
【解析】
过点D作DE⊥BC于E,根据角平分线的作法可知CD平分∠ACB,然后根据角平分线的性质可得DE=AD=3,然后根据三角形的面积公式求面积即可.
【详解】
解:过点D作DE⊥BC于E
由题意可知:CD平分∠ACB
∵
∴DE=AD=3
∵
∴=
故答案为:1.
此题考查的是用尺规作图作角平分线和角平分线的性质,掌握角平分线的作法和角平分线的性质是解决此题的关键.
23、x≥
【解析】
根据二次根式中的被开方数是非负数,可得出x的取值范围.
【详解】
∵二次根式有意义,∴2x﹣1≥0,解得:x≥.
故答案为x≥.
本题考查了二次根式有意义的条件,解答本题的关键是掌握:二次根式有意义,被开方数为非负数.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-x;(2)点P的坐标为(5,0)或(﹣5,0).
【解析】
试题分析:(1)根据题意求得点A的坐标,然后利用待定系数法求得正比例函数的解析式;
(2)利用三角形的面积公式求得OP=5,然后根据坐标与图形的性质求得点P的坐标.
试题解析:(1)∵点A的横坐标为1,且△AOH的面积为1
∴点A的纵坐标为﹣2,点A的坐标为(1,﹣2),
∵正比例函数y=kx经过点A,
∴1k=﹣2解得k=-,
∴正比例函数的解析式是y=-x;
(2)∵△AOP的面积为5,点A的坐标为(1,﹣2),
∴OP=5,
∴点P的坐标为(5,0)或(﹣5,0).
点睛:本题考查了正比例函数图象的性质、待定系数法求正比例函数的解析式.注意点P的坐标有两个.
25、(1)甲:6;乙:6;(2)乙更稳定
【解析】
(1)根据平均数=总数÷总份数,只要把甲乙的总成绩求出来,分别除以5即可;据此解答;
(2)根据求出的方差进行解答即可.
【详解】
(1)两人的平均成绩分别为
,
.
(2)方差分别是
S2甲=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=3.6
S2乙=[(7-6)2+(5-6)2+(6-6)2+(5-6)2+(7-6)2]=0.8
∵S2甲>S2乙,
∴乙更稳定,
本题主要考查平均数的求法和方差问题,然后根据平均数判断解答实际问题.
26、2<x≤1
【解析】
分别计算出各不等式的解集,再求出其公共解集即可.
【详解】
解:解①得:x>2
解②得:x≤1
不等式组的解集是2<x≤1.
本题考查的是解一元一次不等式组,解答此类题目要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
题号
一
二
三
四
五
总分
得分
批阅人
组号
①
②
③
④
⑤
⑥
⑦
⑧
频数
4
8
12
24
18
7
3
摸球总次数
10
20
30
60
90
120
180
240
330
450
“和为7”出现的频数
1
9
14
24
26
37
58
82
109
150
“和为7”出现的频率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33
0.33
时间
…
4
8
10
16
20
21
22
23
24
…
温度/℃
…
…
第1箭
第2箭
第3箭
第4箭
第5箭
甲成绩
9
4
7
4
6
乙成绩
7
5
6
5
7
2025届江苏省南京市南京民办育英第二外国语学校九年级数学第一学期开学学业水平测试试题【含答案】: 这是一份2025届江苏省南京市南京民办育英第二外国语学校九年级数学第一学期开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省绵阳外国语学校九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年四川省绵阳外国语学校九年级数学第一学期开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南京市宁海中学九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年江苏省南京市宁海中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。