2024-2025学年江苏南京市东山外国语学校数学九年级第一学期开学联考模拟试题【含答案】
展开
这是一份2024-2025学年江苏南京市东山外国语学校数学九年级第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数中,自变量的取值范围是( )
A.B.C.D.
2、(4分)在一个直角三角形中,如果斜边长是10,一条直角边长是6,那么另一条直角边长是( ).
A.6B.7C.8D.9
3、(4分)关于反比例函数,下列说法中错误的是( )
A.它的图象分布在一、三象限
B.它的图象过点(-1,-3)
C.当x>0时,y的值随x的增大而增大
D.当x0.16,故A选项不符合题意,
从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,
掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,
掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,
故选D.
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
8、D
【解析】
根据矩形相对于平行四边形的对角线特征:矩形的对角线相等,求解即可.
【详解】
解:由矩形对角线的特性可知:矩形的对角线相等.
故选:D.
本题考查的知识点是矩形的性质以及平行四边形的性质,掌握矩形以及平行四边形的边、角、对角线的性质是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (1,2)
【解析】
先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.
【详解】
解:函数可化为,
当,即时,,
该定点坐标为.
故答案为:.
本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k(x-1)+2的形式是解答此题的关键.
10、
【解析】
根据菱形面积=对角线积的一半可求,再根据勾股定理求出,然后由菱形的面积即可得出结果.
【详解】
∵四边形是菱形,
∴,,
∴,
∵,
∴,
∴,
∴,
∵,
∴;
故答案为:.
本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出是解题的关键.
11、8
【解析】
设二年级需要搬运的图书为a本,则一年级搬运的图书为2a本,这批学生有x人,每人每天的搬运效率为m,根据题意的等量关系建立方程组求出其解即可.
【详解】
解:设二年级需要搬运的图书为a本,则一年级搬运的图书为2a本,这批学生有x人,每人每天的搬运效率为m,由题意得:
解得:x=8,即这批学生有8人
本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,设参数法列方程解实际问题的运用,解答时根据工作量为2a和a建立方程是关键,运用整体思想是难点.
12、70°
【解析】
根据三角形内角和定理,可得∠HCP+∠HPC=62.5°,由角平分线的性质,得∠OCP+∠OPC=125°,由三角形外角性质,得到∠BOC的度数,然后∠OBC+OCB=55°,然后可以计算得到∠A的度数.
【详解】
解:∵∠H=117.5°,
∴∠HCP+∠HPC=180°-117.5°=62.5°,
∵CH平分∠OCP,PH平分∠OPC,
∴∠OCP+∠OPC=2(∠HCP+∠HPC)= 125°,
∴∠BOC=125°,
∴∠OBC+∠OCB=180°-125°=55°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=110°,
∴∠A=180°-110°=70°;
故答案为:70°.
本题考查了角平分线的性质,三角形的内角和定理,三角形的外角性质,解题的关键是灵活运用性质求出有关的角度.
13、.
【解析】
根据众数为1,求出a的值,然后根据平均数的概念求解:
∵众数为1,∴a=1.
∴平均数为:.
考点:1.众数;2.平均数.
三、解答题(本大题共5个小题,共48分)
14、(1)w=0.5x+40;(2)10;(3)该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元
【解析】
(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意可得等量关系:公司获得的利润w=甲种商品的利润+乙种商品的利润,根据等量关系可得函数关系式;
(2)根据资金不多于20万元列出不等式组;
(3)根据一次函数的性质:k>0时,w随x的增大而增大可得答案.
【详解】
解:(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,
根据题意得:w=(14.5﹣12)x+(10﹣8)(20﹣x),
整理得:w=0.5x+40;
故答案为:w=0.5x+40;
(2)由题意得:12x+8(20﹣x)≤200,解得x≤10,
故该公司最多购进10台甲种商品;
(3)∵对于函数w=0.5x+40,w随x的增大而增大,
∴当x=10时,能获得最大利润,最大利润为:w=0.5×10+40=45(万元),
故该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元.
此题主要考查了一次函数的应用,关键是正确理解题意,找出等量关系,列出函数关系式.
15、解:(1)50;(2)20,0.24;(3)见详解;(4)52%.
【解析】
(1)用第二组的频数除以它所占的频率得到调查的总人数;
(2)用第四组的频率乘以样本容量得到a的值,用第三组的频数除以样本容量得到b的值;
(3)利用a的值补全频数分布直方图;
(4)用第四组和第五组的频数和除以样本容量即可.
【详解】
解:解:(1)10÷0.2=50,
所以本次决赛共有50名学生参加;
(2)a=50×0.4=20,b==0.24;
故答案为50;20;0.24;
(3)补全频数分布直方图为:
(4)本次大赛的优秀率=×100%=52%.
故答案为50;20;0.24;52%.
本题考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
16、画图见解析;画图见解析;;.
【解析】
(1)直接利用钝角三角形高线的作法得出答案;
(2)利用圆规与直尺截取得出E,F位置进而得出答案;
(3)利用已知线段和角的度数利用全等三角形的判定与性质分析得出答案.
【详解】
如图所示:高线AD即为所求;
如图所示:
猜想线段AF与EF的大小关系是:;
理由:在和中
,
≌,
;
直线AC与EF的位置关系是:.
理由:在和中
,
≌,
,
.
故答案为;.
本题考查了作图,三角形全等的判定与性质等,正确作出钝角三角形的高线是解题关键.
17、(1)y=﹣x+4;(2)8;(3)点P坐标为(﹣4,0)或(4+4,0)或(4﹣4,0)或(0,0)
【解析】
(1)直线过(2,2)和(0,4)两点,则 待定系数法求解析式.
(2)先求A点坐标,即可求△AOB的面积
(3)分三类讨论,可求点P的坐标
【详解】
解(1)设直线l的解析式y=kx+b
∵直线过(2,2)和(0,4)
∴
解得:
∴直线l的解析式y=﹣x+4
(2)令y=0,则x=4
∴A(4,0)
∴S△AOB=×AO×BO=×4×4=8
(3)∵OA=4,OB=4
∴AB=4
若AB=AP=4
∴在点A左边,OP=4﹣4,
在点A右边,OP=4+4
∴点P坐标(4+4,0),(4﹣4,0)
若BP=BP=4
∴P(﹣4,0)
若AP=BP则点P在AB的垂直平分线上,
∵△AOB是等腰直角三角形,
∴AB的垂直平分线过点O
∴点P坐标(0,0)
本题考查了待定系数法求一次函数解析式,等腰三角形的性质,关键是利用分类讨论的思想解决问题.
18、(1)见解析;(2)
【解析】
(1)按照树状图的画法画出树状图即可;
(2)根据树状图得出摸到一红一白的概率.
【详解】
(1)树状图如下:
(2)根据树状图得:
共有12种情况,其中恰好1红1白的情况有5种
故概率P=
本题考查利用树状图求概率,注意,本题还可用列表法求概率,应熟练掌握这两种方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6
【解析】
先证明△AOE≌△COF,Rt△BFO≌Rt△BFC,再证明△OBC、△BEF是等边三角形即可求出答案.
【详解】
如图,连接BO,
∵四边形ABCD是矩形,
∴DC∥AB,∠DCB=90°
∴∠FCO=∠EAO
在△AOE与△COF中,
∴△AOE≌△COF
∴OE=OF,OA=OC
∵BF=BE
∴BO⊥EF,∠BOF=90°
∵∠BEF=2∠BAC=∠CAB+∠AOE
∴∠EAO=∠EOA,
∴EA=EO=OF=FC=2
在Rt△BFO与Rt△BFC中
∴Rt△BFO≌Rt△BFC
∴BO=BC
在Rt△ABC中,∵AO=OC,
∴BO=AO=OC=BC
∴△BOC是等边三角形
∴∠BCO=60°,∠BAC=30°
∴∠FEB=2∠CAB=60°,
∵BE=BF
∴EB=EF=4
∴AB=AE+EB=2+4=6,
故答案为6.
本题考查的是全等三角形的性质与判定和等边三角形的判定与性质,能够充分调动所学知识是解题本题的关键.
20、
【解析】
设解析式为y=kx,再把(3,−6)代入函数解析式即可算出k的值,进而得到解析式.
【详解】
解:设这个正比例函数的解析式为y=kx(k≠0),
∵正比例函数的图象经过点(3,−6),
∴−6=3k,
解得k=−2,
∴y=−2x.
故答案是:y=−2x.
此题主要考查了待定系数法求正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.
21、cm
【解析】
【分析】先利用勾股定理求出直角三角形的斜边长,然后再根据直角三角形斜边中线的性质进行解答即可.
【详解】直角三角形的斜边长为:=5cm,
所以斜边上的中线长为:cm,
故答案为:cm.
【点睛】本题考查了勾股定理、直角三角形斜边中线,熟知直角三角形斜边中线等于斜边的一半是解题的关键.
22、1.
【解析】
据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.
【详解】
如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DFBC,FEAB,DEAC,∴DF+FE+DEBCABAC(AB+BC+CA)16=1.
故答案为:1.
本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.
23、-1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-7=0,所以增根是x=7,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
解:方程两边都乘(x-3),得
1-2(x-3)=-k,
∵方程有增根,
∴最简公分母x-3=0,即增根是x=3,
把x=3代入整式方程,得k=-1.
故答案为:-1.
考查了分式方程的增根,增根问题可按如下步骤进行:
①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
二、解答题(本大题共3个小题,共30分)
24、(1)作图见解析;(2)作图见解析;(3)2π.
【解析】
【分析】(1)利用轴对称的性质画出图形即可;
(2)利用旋转变换的性质画出图形即可;
(3)BC扫过的面积=,由此计算即可;
【详解】(1)△ABC关于x轴对称的△A1B1C1如图所示;
(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;
(3)BC扫过的面积=
==2π.
【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.
25、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
【解析】
(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
【详解】
(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.
本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
26、(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用“ASA”判断△BCG≌△CFA,从而得到BG=CF;
(2)连结AG,利用等腰直角三角形的性质得CG垂直平分AB,则BG=AG,再证明∠D=∠GAD得到AG=DG,所以BG=DG,接着证明△ADE≌△CGE得到DE=GE,则BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;
(3)先得到BG=2,GE=1,则BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x +(2x)=3,解得x= ,所以BC=,AB= BC=,然后在Rt△ABD中利用勾股定理计算AD的长.
【详解】
(1)证明:∵∠ACB=90°,AC=BC,
∴△ACB为等腰直角三角形,
∴∠CAF=∠ACG=45°,
∵CG平分∠ACB,
∴∠BCG=45°,
在△BCG和△CFA中
,
∴△BCG≌△CFA,
∴BG=CF;
(2)证明:连结AG,
∵CG为等腰直角三角形ACB的顶角的平分线,
∴CG垂直平分AB,
∴BG=AG,
∴∠GBA=∠GAB,
∵AD⊥AB,
∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,
∴∠D=∠GAD,
∴AG=DG,
∴BG=DG,
∵CG⊥AB,DA⊥AB,
∴CG∥AD,
∴∠DAE=∠GCE,
∵E为AC边的中点,
∴AE=CE,
在△ADE和△CGE中
,
∴△ADE≌△CGE,
∴DE=GE,
∴DG=2DE,
∴BG=2DE,
∵△BCG≌△CFA,
∴CF=BG,
∴CF=2DE;
(3)∵DE=1,
∴BG=2,GE=1,即BE=3,
设CE=x,则BC=AC=2CE=2x,
在Rt△BCE中,x+(2x) =3,解得x=,
∴BC=,
∴AB= BC=,
在Rt△ABD中,∵BD=4,AB= ,
∴AD=.
此题考查全等三角形的判定与性质,等腰直角三角形,解题关键在于作辅助线
题号
一
二
三
四
五
总分
得分
进价(万元/件)
售价(万元/件)
甲
12
14.5
乙
8
10
组别
成绩(分)
频数(人数)
频率
一
2
二
10
0.2
三
12
四
0.4
五
6
相关试卷
这是一份江苏南京市东山外国语学校2023-2024学年九上数学期末统考试题含答案,共7页。试卷主要包含了方程x=x的根是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省南京市东山外国语学校九上数学期末经典模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年江苏南京市东山外国语学校数学八上期末学业质量监测试题含答案,共8页。试卷主要包含了估算的值在,已知,下列命题中,是假命题的是,点A等内容,欢迎下载使用。