终身会员
搜索
    上传资料 赚现金

    江苏省连云港市赣榆实验中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】

    立即下载
    加入资料篮
    江苏省连云港市赣榆实验中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】第1页
    江苏省连云港市赣榆实验中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】第2页
    江苏省连云港市赣榆实验中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省连云港市赣榆实验中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份江苏省连云港市赣榆实验中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若在实数范围内有意义,则x的取值范围( )
    A.x≥2B.x≤2
    C.x>2D.x<2
    2、(4分)不等式组的解集在数轴上表示正确的是( )
    A.B.
    C.D.
    3、(4分)如图,在中,,若的周长为13,则的周长为( )
    A.B.C.D.
    4、(4分)如图,点P是正方形内一点,连接并延长,交于点.连接,将绕点顺时针旋转90°至,连结.若,,,则线段的长为( )
    A.B.4C.D.
    5、(4分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    6、(4分)如图,在矩形ABED中,AB=4,BE=EC=2,动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是( )
    A.B.
    C.D.
    7、(4分)如图,正方形ABCD与正方形EBHG的边长均为,正方形EBHG的顶点E恰好落在正方形ABCD的对角线BD上,边EG与CD相交于点O,则OD的长为
    A.
    B.
    C.
    D.
    8、(4分)某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:
    关于这组数据,下列说法正确的是( )
    A.众数是2册B.中位数是2册
    C.平均数是3册D.方差是1.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知关于的一元二次方程有两个相等的实数根,则的值是__________.
    10、(4分)式子有意义的条件是__________.
    11、(4分)如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.
    12、(4分)已知,则=______.
    13、(4分)在一个扇形统计图中,表示种植苹果树面积的扇形的圆心角为,那么苹果树面积占总种植面积的___.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)正方形ABCD中,E是BC上一点,F是CD延长线上一点,,连接AE,AF,EF,G为EF中点,连接AG,DG.
    (1)如图1:若,,求DG;
    (2)如图2:延长GD至M,使,过M作MN∥FD交AF的延长线于N,连接NG,若.求证:.
    15、(8分)甲、乙两人参加射箭比赛,两人各射了5箭,他们的成绩(单位:环)统计如下表.
    (1)分别计算甲、乙两人射箭比赛的平均成绩;
    (2)你认为哪个人的射箭成绩比较稳定?为什么?
    16、(8分)在“母亲节”前夕,店主用不多于900元的资金购进康乃馨和玫瑰两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?
    17、(10分)如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).
    (1)求点D的坐标.
    (2)求直线BC的解析式.
    (3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
    18、(10分)如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)命题“对顶角相等”的逆命题的题设是___________.
    20、(4分)已知:函数,,若,则__________(填“”或“”或 “”).
    21、(4分)直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
    22、(4分)某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的中位数是_____.
    23、(4分)已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点为轴负半轴上的一个点,过点作轴的垂线,交函数的图像于点,交函数的图像于点,过点作轴的平行线,交于点,连接.
    (1)当点的坐标为(–1,0)时,求的面积;
    (2)若,求点的坐标;
    (3)连接和.当点的坐标为(,0)时,的面积是否随的值的变化而变化?请说明理由.
    25、(10分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).
    (1)画出△ABC关于x轴对称的△A1B1C1;
    (2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;
    (3)在(2)的条件下,求线段BC扫过的面积(结果保留π).
    26、(12分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.
    (1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?
    (2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.
    【详解】
    ∵在实数范围内有意义,
    ∴x−2≥0,解得x≥2.
    故答案选A.
    本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.
    2、B
    【解析】
    根据大于小的小于大的取中间确定不等式组的解集,最后用数轴表示解集.
    【详解】
    所以这个不等式的解集是-3≤x<1,
    用数轴表示为
    故选B
    此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.
    3、D
    【解析】
    求出AB+BC的值,其2倍便是平行四边形的周长.
    【详解】
    解:的周长为13,,

    则平行四边形周长为,
    故选:.
    本题主要考查了平行四边形的性质,解题的规律是求解平行四边形的周长就是求解两邻边和的2倍.
    4、D
    【解析】
    如图作BH⊥AQ于H.首先证明∠BPP′=90°,再证明△PHB是等腰直角三角形,求出PH、BH、AB,再证明△ABH∽△AQB,可得AB2=AH•AQ,由此即可解决问题。
    【详解】
    解:如图作于.
    ∵是等腰直角三角形,,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,AH=AP+PH=1+2=3,
    在中,,
    ∵,,
    ∴,
    ∴,
    ∴,
    故选:D.
    本题考查正方形的性质、旋转变换、勾股定理的逆定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考常考题型.
    5、C
    【解析】
    先根据时,,得到随的增大而减小,所以的比例系数小于,那么,解不等式即可求解.
    【详解】
    时,,
    随的增大而减小,函数图象从左往右下降,



    即函数图象与轴交于正半轴,
    这个函数的图象不经过第三象限.
    故选:.
    本题考查一次函数的图象性质:当,随的增大而增大;当时,随的增大而减小.
    6、D
    【解析】
    分别求出点P在DE、AD、AB上运动时,S与t的函数关系式,继而根据函数图象的方向即可得出答案.
    【详解】
    解:根据题意得:
    当点P在ED上运动时,S=BC•PE=2t(0≤t≤4);
    当点P在DA上运动时,此时S=8(4<t<6);
    当点P在线段AB上运动时,S=BC(AB+AD+DE﹣t)=20﹣2t(6≤t≤10);
    结合选项所给的函数图象,可得D选项符合题意.
    故选:D.
    本题考查了动点问题的函数图象,解答该类问题也可以不把函数图象的解析式求出来,利用排除法进行解答.
    7、B
    【解析】
    由正方形性质可得AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,由勾股定理得BD=,求出DE,再根据勾股定理求OD.
    【详解】
    解:因为,正方形ABCD与正方形EBHG的边长均为,
    所以,AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,
    所以,BD=,
    所以,DE=BD-BE=2- ,
    所以,OD=
    故选B.
    本题考核知识点:正方形,勾股定理.解题关键点:运用勾股定理求出线段长度.
    8、B
    【解析】
    根据方差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.
    【详解】
    解:A、众数是3册,结论错误,故A不符合题意;
    B、中位数是2册,结论正确,故B符合题意;
    C、平均数是(0×10+1×20+2×30+3×40)÷100=2册,结论错误,故C不符合题意;
    D、方差=×[10×(0-2)2+20×(1-2)2+30×(2-2)2+40×(3-2)2]=1,结论错误,故D不符合题意.
    故选:B.
    本题考查方差、平均数、中位数及众数,属于基础题,掌握各部分的定义及计算方法是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据方程有两个相等的实数根,可得b2-4ac=0,方程化为一般形式后代入求解即可.
    【详解】
    原方程化为一般形式为:mx2+(2m+1)x=0,
    ∵方程有两个相等的实数根
    ∴(2m+1)2-4m×0=0
    本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.
    10、且
    【解析】
    式子有意义,则x-2≥0,x-3≠0,解出x的范围即可.
    【详解】
    式子有意义,则x-2≥0,x-3≠0,解得:,,故答案为且.
    此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.
    11、30°
    【解析】
    分析:由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.
    详解:∵四边形ABCD是矩形,
    ∴∠ADC=90°,OA=OD,
    ∴∠ODA=∠DAE,
    ∵∠CDE =2∠ADE,
    ∴∠ADE=90°÷3=30°,
    ∵DE⊥AC,
    ∴∠AED=90°,
    ∴∠DAE=60°,
    ∴∠ODA=60°,
    ∴∠BDC=90°-60°=30°;
    故答案为:30°.
    点睛:本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
    12、
    【解析】
    已知等式整理表示出a,原式通分并利用同分母分式的加减法则计算,把表示出的a代入计算即可求出值.
    【详解】
    解:由=,得到2a=3b,即a=,
    则原式===.
    此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    13、30%.
    【解析】
    因为圆周角是360°,种植苹果树面积的扇形圆心角是108°,说明种植苹果树面积占总面积的108°÷360°=30%.据此解答即可.
    【详解】
    由题意得:种植苹果树面积占总面积的:108°÷360°=30%.
    故答案为:30%.
    本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的分率等于该部分所对应的扇形圆心角的度数与360°的比值.
    三、解答题(本大题共5个小题,共48分)
    14、(1)DG=;(2),见解析.
    【解析】
    (1)取CF的中点H,连接GH;先证明△ABE≌△ADF(SAS),在证明△AEF是等腰直角三角形,由GH是Rt△EFC的中位线,在Rt△DGH中即可求解;
    (2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,过点G作GT⊥AF,交AF于点T;设BE=a,分别求出,,,再由△AFE是等腰直角三角形,G是EF的中点,求出,证明△NGK≌△NGT(HL),则有TN=NK=MN+MK,∠ANG=30°,可求,得到=MN+NA.
    【详解】
    解:(1)取CF的中点H,连接GH,
    ∵BE=DF,AB=AD,∠ADF=∠B=90°,
    ∴△ABE≌△ADF(SAS),
    ∴AF=AE,
    ∵AB=3,BE=1,
    ∴AF=AE= ,CF=4,CE=2,
    ∴EF=2,
    ∴△AEF是等腰直角三角形,
    ∵G为EF中点,CF的中点H,
    ∴GH是Rt△EFC的中位线,
    ∴GH=CE=1,
    ∴FH=2,
    ∴DH=1,
    ∴DG=;
    (2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,
    过点G作GT⊥AF,交AF于点T;
    设BE=a,
    在Rt△ABE中,∠BAE=30°,
    ∴AB=a,AE=2a,
    ∴CE=(-1)a,
    ∵DF=BE,
    ∴CF=(+1)a,
    ∵△AFE是等腰直角三角形,G是EF的中点,
    ∴AG=a,
    ∵G是EF中点,GQ⊥CF,
    ∴GQ=CE=a,
    ∴DQ=CD-CF=a,
    ∴GQ=DQ,
    ∴∠DGQ=45°,
    ∴GK=MK,
    ∴GM=GA,
    ∴GK=MK=a,
    ∵∠FAG=45°,
    ∴GT=a,
    ∴Rt△NGK≌Rt△NGT(HL),
    ∴TN=NK=MN+MK,
    ∠ANG=∠ANK,
    ∵∠BAE=30°,
    ∴∠NAD=30°,
    ∴∠ANK=60°,
    ∴∠ANG=30°,




    即.
    本题考查正方形的性质,三角形的性质;熟练掌握正方形的性质,三角形全等的判定定理和性质定理,特殊三角形的性质是解题的关键.
    15、(1)甲:6;乙:6;(2)乙更稳定
    【解析】
    (1)根据平均数=总数÷总份数,只要把甲乙的总成绩求出来,分别除以5即可;据此解答;
    (2)根据求出的方差进行解答即可.
    【详解】
    (1)两人的平均成绩分别为
    ,

    (2)方差分别是
    S2甲=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=3.6
    S2乙=[(7-6)2+(5-6)2+(6-6)2+(5-6)2+(7-6)2]=0.8
    ∵S2甲>S2乙,
    ∴乙更稳定,
    本题主要考查平均数的求法和方差问题,然后根据平均数判断解答实际问题.
    16、至少购进玫瑰200枝.
    【解析】
    由康乃馨和玫瑰共500枝,可设玫瑰x枝,康乃馨(500-x)枝,可求出每种花的总进价,再利用两种花总进价和“不多于900元”列出不等式并解答.
    【详解】
    解:设购进玫瑰x枝,则购进康乃馨(500-x)枝,列不等式得:
    1.5x+2(500-x)≤900
    解得:x≥200
    答:至少购进玫瑰200枝.
    本题考查了一元一次不等式的应用,关键是找准不等关系列不等式,是常考题型.
    17、(1)D(4,7)(2)y=(3)详见解析
    【解析】
    试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;
    (2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;
    (3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C的对称点时,△PCD为等腰三角形,然后求解即可.
    试题解析:(1)x2﹣7x+12=0,
    解得x1=3,x2=4,
    ∵OA>OB,
    ∴OA=4,OB=3,
    过D作DE⊥y于点E,
    ∵正方形ABCD,
    ∴AD=AB,∠DAB=90°,
    ∠DAE+∠OAB=90°,
    ∠ABO+∠OAB=90°,
    ∴∠ABO=∠DAE,
    ∵DE⊥AE,
    ∴∠AED=90°=∠AOB,
    ∵DE⊥AE
    ∴∠AED=90°=∠AOB,
    ∴△DAE≌△ABO(AAS),
    ∴DE=OA=4,AE=OB=3,
    ∴OE=7,
    ∴D(4,7);
    (2)过点C作CM⊥x轴于点M,
    同上可证得△BCM≌△ABO,
    ∴CM=OB=3,BM=OA=4,
    ∴OM=7,
    ∴C(7,3),
    设直线BC的解析式为y=kx+b(k≠0,k、b为常数),
    代入B(3,0),C(7,3)得,,
    解得,
    ∴y=x﹣;
    (3)存在.
    点P与点B重合时,P1(3,0),
    点P与点B关于点C对称时,P2(11,6).
    考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数
    18、证明见解析.
    【解析】
    根据平行四边形的判定推出四边形OBEC是平行四边形,根据菱形性质求出∠AOB=90°,根据矩形的判定推出即可.
    【详解】
    ∵BE∥AC,CE∥DB,
    ∴四边形OBEC是平行四边形,
    又∵四边形ABCD是菱形,且AC、BD是对角线,
    ∴AC⊥BD,
    ∴∠BOC=90°,
    ∴平行四边形OBEC是矩形.
    本题考查了菱形性质,平行四边形的判定,矩形的判定的应用,主要考查学生的推理能力.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、两个角相等
    【解析】
    交换原命题的题设与结论即可得到逆命题,然后根据命题的定义求解.
    【详解】
    解:命题“对顶角相等”的逆命题是:“如果两个角相等,那么这两个角是对顶角”,
    题设是:两个角相等
    故答案为:两个角相等.
    本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
    20、<
    【解析】
    联立方程组,求出方程组的解,根据方程组的解以及函数的图象进行判断即可得解.
    【详解】
    根据题意联立方程组得,
    解得,,
    画函数图象得,
    所以,当,则<.
    故答案为:<.
    本题考查了一次函数图象的性质与特征,求出两直线的交点坐标是解决此题的关键.
    21、1.
    【解析】
    试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
    ∴斜边上的中线长=×10=1.
    考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
    22、7.5
    【解析】
    根据中位数的定义先把数据从小到大的顺序排列,找出最中间的数即可得出答案.
    【详解】
    解:因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,则中位数是=7.5(环).
    故答案为:7.5.
    此题考查了中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    23、
    【解析】
    根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.
    【详解】
    解:∵正方形的对角线长为2,
    设正方形的边长为x,
    ∴2x²=(2)²
    解得:x=2
    ∴正方形的边长为:2
    故答案为2.
    本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2);(3)的面积不随t的值的变化而变化,理由见解析。
    【解析】
    (1)根据题意首先计算出C点的坐标,再计算三角形的面积.
    (2)首先利用反比例函数的关系式设出A点的坐标,在表示B、C点的坐标,结合AB=BC求解未知数,即可的A点的坐标.
    (3)过点C作轴于点E,轴于点D,再根据P点的坐标表示A、B、C点的坐标,再利用,即可求解出的面积.
    【详解】
    解:(1)当点P的坐标为时,点A、B的横坐标为-1,
    ∵点A在反比例函数上,点B在反比例函数上,
    ∴点,点.
    轴,
    ∴点C的纵坐标为4,
    又∵点C在上,∴点C的坐标为,

    (2)设点A的坐标为,则

    得方程,解之,得(含正),

    (3)过点C作轴于点E,轴于点D。如图所示:
    ∵点P的坐标为,
    ∴点A的坐标为,点,点
    故的面积不随t的值的变化而变化
    本题主要考查反比例函数的性质,关键在于反比例函数上的点与坐标轴形成矩形的面积性质,反比例函数上的点与坐标轴形成矩形的面积是定值.
    25、(1)作图见解析;(2)作图见解析;(3)2π.
    【解析】
    【分析】(1)利用轴对称的性质画出图形即可;
    (2)利用旋转变换的性质画出图形即可;
    (3)BC扫过的面积=,由此计算即可;
    【详解】(1)△ABC关于x轴对称的△A1B1C1如图所示;
    (2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;
    (3)BC扫过的面积=
    ==2π.
    【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.
    26、解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,
    根据题意得:,解得:.
    答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆.
    (2)设载重量为8吨的卡车增加了z辆,
    依题意得:8(5+z)+10(7+6﹣z)>165,解得:z<.
    ∵z≥0且为整数,∴z=0,1,2,6﹣z=6,5,1.
    ∴车队共有3种购车方案:
    ①载重量为8吨的卡车不购买,10吨的卡车购买6辆;
    ②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;
    ③载重量为8吨的卡车购买2辆,10吨的卡车购买1辆.
    【解析】
    试题分析:(1)根据“车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;
    (2)利用“车队需要一次运输沙石165吨以上”得出不等式,求出购买方案即可.
    试题解析:(1)设该车队载重量为8吨、10吨的卡车分别有x辆、y辆,
    根据题意得:,
    解之得:.
    答:该车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;
    (2)设载重量为8吨的卡车增加了z辆,
    依题意得:8(5+z)+10(7+6−z)>165,
    解之得:,
    ∵且为整数,
    ∴z=0,1,2;
    ∴6−z=6,5,1.
    ∴车队共有3种购车方案:
    ①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;
    ②载重量为8吨的卡车购买2辆,10吨的卡车购买1辆;
    ③载重量为8吨的卡车不购买,10吨的卡车购买6辆
    题号





    总分
    得分
    批阅人
    册数
    0
    1
    2
    3
    人数
    10
    20
    30
    40
    第1箭
    第2箭
    第3箭
    第4箭
    第5箭
    甲成绩
    9
    4
    7
    4
    6
    乙成绩
    7
    5
    6
    5
    7

    相关试卷

    江苏省靖江市城南新区中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份江苏省靖江市城南新区中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省淮安市泾口镇初级中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份江苏省淮安市泾口镇初级中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省中学山市小榄镇2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份广东省中学山市小榄镇2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map