终身会员
搜索
    上传资料 赚现金

    江苏省江阴市河塘中学2024年数学九年级第一学期开学学业质量监测试题【含答案】

    立即下载
    加入资料篮
    江苏省江阴市河塘中学2024年数学九年级第一学期开学学业质量监测试题【含答案】第1页
    江苏省江阴市河塘中学2024年数学九年级第一学期开学学业质量监测试题【含答案】第2页
    江苏省江阴市河塘中学2024年数学九年级第一学期开学学业质量监测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省江阴市河塘中学2024年数学九年级第一学期开学学业质量监测试题【含答案】

    展开

    这是一份江苏省江阴市河塘中学2024年数学九年级第一学期开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某市居民用电的电价实行阶梯收费,收费标准如下表:
    七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是( ).
    A.100B.400C.396D.397
    2、(4分)如图,P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列三个结论:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正确结论的序号是( )
    A.①②B.①③C.②③D.①②③
    3、(4分)下列各组数据中,不是勾股数的是( )
    A.3,4,5B.5,7,9C.8,15,17D.7,24,25
    4、(4分)下列图案中,既是轴对称图形又是中心对称图形的是( )
    A.B.
    C.D.
    5、(4分)等腰中,,用尺规作图作出线段BD,则下列结论错误的是( )
    A.B.C.D.的周长
    6、(4分)若分式有意义,则x的取值范围是( )
    A.x≠5B.x≠﹣5C.x>5D.x>﹣5
    7、(4分)在反比例函数 y  图象的每个象限内,y 随 x 的增大而减少,则 k 值可以是( )
    A.3B.2C.1D.﹣1
    8、(4分)已知y是x的一次函数,下表中列出了部分对应值:
    则m等于( )
    A.-1B.0C.D.2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)方程的解是________.
    10、(4分)如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,,则折痕CD所在直线的解析式为____.
    11、(4分)如图,,请你再添加一个条件______,使得(填一个即可).
    12、(4分)若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
    13、(4分)在正方形ABCD中,E是BC边延长线上的一点,且CE=BD,则∠AEC=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的
    对于图形和图形,若图形和图形分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形和图形是“中心轴对称”的.
    特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.
    (1)如图1,在正方形ABCD中,点,点,
    ①下列四个点,,,中,与点A是“中心轴对称”的是________;
    ②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标的取值范围;
    (2)四边形GHJK的四个顶点的坐标分别为,,,,一次函数图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.
    15、(8分)如图是一张长20cm、宽12cm的矩形纸板,将纸板四个角各剪去一个边长为cm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.
    (1)这个无盖纸盒的长为 cm,宽为 cm;(用含x的式子表示)
    (2)若要制成一个底面积是180m2的无盖长方体纸盒,求的值.
    16、(8分)如图,在平行四边形中,,于点,试求的度数.
    17、(10分)某校计划购进A,B两种树木共100棵进行校园绿化,已知A种树木每棵100元,B种树木每棵80元,因布局需要,购买A种树木的数量不少于B种树木数量的3倍,实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
    18、(10分)阅读理解
    在△ABC中,AB、BC、AC三边的长分别为、、2,求这个三角形的面积.
    解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=×2×1=1.
    解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.
    方法迁移:请解答下面的问题:
    在△ABC中,AB、AC、BC三边的长分别为、、,求这个三角形的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在一次函数y=(m-1)x+6中,y随x的增大而增大,则m的取值范围是______.
    20、(4分)对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围_____.
    21、(4分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)
    22、(4分)在△ABC中,AC=BC=,AB=2,则△ABC中的最小角是_____.
    23、(4分)如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4,则□ABCD的面积等于________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.
    (1)求这两年该县投入教育经费的年平均增长率;
    (2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.
    25、(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是AB的中点.已知AC=8cm,BD=6cm,求OE的长.
    26、(12分)如图所示,,分别表示使用一种白炽灯和一种节能灯的费用(元,分别用y1与y2表示)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.
    (1)根据图象分别求出,对应的函数(分别用y1与y2表示)关系式;
    (2)对于白炽灯与节能灯,请问该选择哪一种灯,使用费用会更省?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    先判断出电费是否超过400度,然后根据不等关系:七月份电费支出不超过200元,列不等式计算即可.
    【详解】
    解:0.48×200+0.53×200
    =96+106
    =202(元),
    故七月份电费支出不超过200元时电费不超过400度,
    依题意有0.48×200+0.53(x-200)≤200,
    解得x≤1.
    答:李叔家七月份最多可用电的度数是1.
    故选:C.
    本题考查了列一元一次不等式解实际问题的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等关系.
    2、B
    【解析】
    连接PC,根据正方形的对角线平分一组对角可得∠ABP=∠CBP=45°,然后利用“边角边”证明△ABP和△CBP全等,根据全等三角形对应边相等可得AP=PC,对应角相等可得∠BAP=∠BCP,再根据矩形的对角线相等可得EF=PC,于是得到结论.
    【详解】
    解:如图,连接PC,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,
    ∵在△ABP和△CBP中,,
    ∴△ABP≌△CBP(SAS),
    ∴AP=PC,∠BAP=∠BCP,
    又∵PE⊥BC,PF⊥CD,
    ∴四边形PECF是矩形,
    ∴PC=EF,∠BCP=∠PFE,
    ∴AP=EF,∠PFE=∠BAP,故①③正确;
    只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故②错误;
    故选:B.
    本题主要考查了正方形的性质,正确证明△ABP≌△CBP,以及理解P的任意性是解决本题的关键.
    3、B
    【解析】
    欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
    【详解】
    、,能构成直角三角形,是整数,故选项错误;
    、,不能构成直角三角形,故选项正确;
    、,构成直角三角形,是正整数,故选项错误;
    、,能构成直角三角形,是整数,故选项错误.
    故选:.
    此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.
    4、B
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项正确;
    C、不是轴对称图形,是中心对称图形,故此选项错误;
    D、不是轴对称图形,是中心对称图形,故此选项错误.
    故选:B.
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、C
    【解析】
    根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.
    【详解】
    解:∵等腰△ABC中,AB=AC,∠A=36°,
    ∴∠ABC=∠ACB=72°,
    由作图痕迹发现BD平分∠ABC,
    ∴∠A=∠ABD=∠DBC=36°,
    ∴AD=BD,故A、B正确;
    ∵AD≠CD,
    ∴S△ABD=S△BCD错误,故C错误;
    △BCD的周长=BC+CD+BD=BC+AC=BC+AB,
    故D正确.
    故选C.
    本同题考查等腰三角形的性质,能够发现BD是角平分线是解题的关键.
    6、A
    【解析】
    解:∵若分式有意义,
    ∴x﹣5≠0,∴x≠5;
    故选A.
    7、A
    【解析】
    根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,则可得答案 .
    【详解】
    根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,所以k>2,结合选项选择A.
    本题考查反比例函数图象的性质,解题的关键是掌握反比例函数图象的性质.
    8、B
    【解析】
    由于一次函数过点(-1,1)、(1,-1),则可利用待定系数法确定一次函数解析式,然后把(0,m)代入解析式即可求出m的值.
    【详解】
    设一次函数解析式为y=kx+b,
    把(−1,1)、(1,−1)代入
    解得,
    所以一次函数解析式为y=−x,
    把(0,m)代入得m=0.
    故答案为:B.
    此题考查待定系数法求一次函数解析式,解题关键在于运用一次函数图象上点的坐标特征求解m.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    推出方程x-3=0或x=0,求出方程的解即可.
    【详解】
    解:∵,
    即x=0或x+3=0,
    ∴方程的解为.
    本题主要考查对解一元二次方程,解一元一次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.
    10、y=x+9.
    【解析】
    根据OC=9,先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.
    【详解】
    ∵OC=9,,
    ∴BC=15,
    ∵四边形OABC是矩形,
    ∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,
    ∴C(0,9),
    ∵折叠,
    ∴B′C=BC=15,B′D=BD,
    在Rt△COB′中,OB′==12,
    ∴AB′=15-12=3,
    设AD=m,则B′D=BD=9-m,
    Rt△AB′D中,AD2+B′A2=B′D2,
    即m2+32=(9-m)2,
    解得m=4,
    ∴D(15,4)
    设CD所在直线解析式为y=kx+b,
    把C、D两点坐标分别代入得:,
    解得:,
    ∴CD所在直线解析式为y=x+9,
    故答案为:y=x+9.
    本题考查了矩形的性质,折叠的性质,勾股定理,待定系数法求一次函数的解析式,求出点D的坐标是解本题的关键.
    11、(答案不唯一)
    【解析】
    注意两个三角形有一个公共角∠A,再按照三角形全等的判定方法结合图形添加即可.
    【详解】
    解:∵∠ A=∠ A, AB=AC,
    ∴若按照SAS可添加条件AD=AE;
    若按照AAS可添加条件∠ ADB=∠AEC;
    若按照ASA可添加条件∠B=∠C;
    故答案为AD=AE或∠ADB=∠AEC或∠B=∠C.
    本题考查了全等三角形的判定方法,熟练掌握判定三角形全等的各种方法是解决此类问题的关键.
    12、
    【解析】
    根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.
    【详解】
    解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,
    ∴ ,
    整理得, ,

    当时,
    故答案为:.
    本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.
    13、22.5°
    【解析】
    连接AC,由正方形性质可知BD=AC,∠ACB=45°,由CE=BD得AC=CE,所以∠CAE=∠CEA,因为∠ACB=∠CAE+∠AEC=2∠AEC=45°,即可得答案.
    【详解】
    如图:连接AC,
    ∵ABCD是正方形
    ∴AC=BD,∠ACB=45°,
    ∵CE=BD
    ∴∠CAE=∠CEA,
    ∵∠ACB=∠CAE+∠AEC=2∠AEC=45°
    ∴∠AEC=22.5°,
    故答案为:22.5°
    本题考查正方形的性质,熟练掌握相关知识是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)①P1,P1;②≤xE≤;(2)2≤b≤2+2或-2-2≤b≤-2.
    【解析】
    (1)①根据画出图形,根据“中心轴对称”的定义即可判断.
    ②以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.求出点E,点F的坐标即可判断.
    (2)如图3中,设GK交x轴于P.求出两种特殊位置的b的值即可判断:当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.再根据对称性,求出直线与y轴的负半轴相交时b的范围即可.
    【详解】
    解:(1)如图1中,
    ①∵OA=1,OP1=1,OP1=1,
    ∴P1,P1与点A是“中心轴对称”的,
    故答案为P1,P1.
    ②如图2中,
    以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.
    ∵在正方形ABCD中,点A(1,0),点C(2,1),
    ∴点B(1,1),
    ∵点E在射线OB上,
    ∴设点E的坐标是(x,y),
    则x=y,
    即点E坐标是(x,x),
    ∵点E与正方形ABCD是“中心轴对称”的,
    ∴当点E与点A对称时,则OE=OA=1,
    过点E作EH⊥x轴于点H,则OH2+EH2=OE2,
    ∴x2+x2=12,
    解得x=,
    ∴点E的横坐标xE=,
    同理可求点:F(,),
    ∵E(,),F(,),
    ∴观察图象可知满足条件的点E的横坐标xE的取值范围:≤xE≤.
    (2)如图3中,设GK交x轴于P.
    当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,
    当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,
    观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.
    根据对称性可知:当-2-2≤b≤-2时,线段MN与四边形GHJK是“中心轴对称”的.
    综上所述,满足条件的b的取值范围:2≤b≤2+2或-2-2≤b≤-2.
    本题属于一次函数综合题,考查了正方形的性质,“中心轴对称”的定义,一次函数的性质等知识,解题的关键是理解题意,学会性质特殊点特殊位置解决问题,属于中考压轴题.
    15、(1)(20﹣2x),(12﹣2x);(2)1
    【解析】
    (1)观察图形根据长宽的变化量用含x的代数式表示即可.
    (2)根据(1)中代数式列出方程求解,去掉不合题意的取值.
    【详解】
    (1)长为(20﹣2x),宽为(12﹣2x)
    (2)由题意(20﹣2x)(12﹣2x)=180
    240-64x+4x2=180
    4x2-64x+60=0
    x2-16x+15=0
    (x-15)(x-1)=0
    解得x1=15(不合题意),x2=1
    ∴x的取值只能是1,即x=1.
    结合图形观察长宽的变化量,根据一元二次方程求解即可.
    16、.
    【解析】
    由BD=CD可得∠DBC=∠C=70°,由平行四边形的性质可得AD∥BC,从而有∠ADB=∠DBC=70°,继而在直角△AED中,根据直角三角形两锐角互余即可求得答案.
    【详解】


    在中,,

    于点,

    .
    本题考查了平行四边形的性质,等边对等角,直角三角形两锐角互余等知,熟练掌握相关知识是解题的关键.
    17、购买A种树木75棵,购买B种树木25棵,实际所花费用最省,最省的费用为8550元.
    【解析】
    设购买A种树木x棵,则购买B种树木(100﹣x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”,列出关于x的一元一次不等式,求得x的取值范围,根据“A种树木每棵100元,B种树木每棵80元,实际付款总金额按市场价九折优惠,”把实际付款的总金额W用x表示出来,根据x的取值范围,求出W的最小值,即可得到答案.
    【详解】
    设购买A种树木x棵,则购买B种树木(100﹣x)棵,
    根据题意得:x≥3(100﹣x),
    解得:x≥75,
    设实际付款的总金额为W元,
    根据题意得:W=0.9[100x+80(100﹣x)]=18x+7200,
    W是关于x的一次函数,且随着x的增大而增大,
    即当x取到最小值75时,W取到最小值,
    W最小=18×75+7200=8550,
    100﹣75=25,
    即购买A种树木75棵,购买B种树木25棵,
    答:购买A种树木75棵,购买B种树木25棵,实际所花费用最省,最省的费用为8550元.
    本题考查了一元一次不等式的应用和一次函数的性质,正确找出不等关系,列出一元一次不等式,并正确利用一次函数的增减性是解决本题的关键.
    18、S△ABC=.
    【解析】
    方法迁移:根据题意画出图形,△ABC的面积等于矩形EFCH的面积減去三个小直角三角形的面积;思维拓展:根据题意画出图形,△ABC的面积等于大矩形的面积减去三个小直角三角形的面积
    【详解】
    建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图所示,
    借用网格面积可得S△ABC=S矩形EFCH﹣S△ABE﹣S△AFC﹣S△CBH=9﹣ ×2×1﹣×3×1﹣×2×3=
    此题考查勾股定理,解题关键在于利用勾股定理算出各个边长
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、m>1
    【解析】
    由一次函数的性质可得到关于m的不等式,可求得m的取值范围.
    【详解】
    解:∵一次函数y=(m-1)x+6,若y随x的增大而增大,
    ∴m-1>0,解得m>1,
    故答案为:m>1.
    本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
    20、m>1
    【解析】
    根据图象的增减性来确定(m﹣1)的取值范围,从而求解.
    【详解】
    解:∵一次函数y=(m﹣1)x+1,若y随x的增大而增大,
    ∴m﹣1>2,
    解得,m>1.
    故答案是:m>1.
    本题考查了一次函数的图象与系数的关系.
    函数值y随x的增大而减小⇔k<2;
    函数值y随x的增大而增大⇔k>2.
    21、-1
    【解析】
    先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.
    【详解】
    ∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣1.
    故答案为:-1.
    本题考查了函数值,解题的关键是掌握函数值的计算方法.
    22、45°.
    【解析】
    根据勾股定理得到逆定理得到△ABC是等腰直角三角形,根据等腰直角三角形的性质即可的结论.
    【详解】
    解:∵AC=BC=,AB=2,
    ∴AC2+BC2=2+2=4=22=AB2,
    ∴△ABC是等腰直角三角形,
    ∴△ABC中的最小角是45°;
    故答案为:45°.
    本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
    23、16
    【解析】
    根据等边三角形性质求出OA=OB=AB,根据平行四边形性质推出AC=BD,根据矩形的判定推出平行四边形ABCD是矩形;求出AC长,根据勾股定理求出BC,根据矩形的面积公式求出即可.
    【详解】
    ∵△AOB是等边三角形,
    ∴OA=OB=AB=4,
    ∵四边形ABCD是平行四边形,
    ∴AC=2OA,BD=2OB,
    ∴AC=BD,
    ∴平行四边形ABCD是矩形.
    ∵OA=AB=4,AC=2OA=8,四边形ABCD是矩形,
    ∴∠ABC=90°,
    ∵在Rt△ABC中,由勾股定理得:BC=,
    ∴▱ABCD的面积是:AB×BC=4×4=16.
    此题考查矩形的判定与性质,平行四边形的性质,勾股定理,等边三角形的性质,解题关键在于求出AC长.
    二、解答题(本大题共3个小题,共30分)
    24、(1)20%;(2)10368万元.
    【解析】
    试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.
    试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640
    解得:=0.2=-2.2(舍去)
    所以该县投入教育经费的年平均增长率为20%
    (2)因为2016年该县投入教育经费为8640万元,且增长率为20%
    所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)
    考点:一元二次方程的应用
    25、OE=cm
    【解析】
    根据菱形的性质及三角形中位线定理解答.
    【详解】
    ∵ABCD是菱形,∴OA=OC,OB=OD,OB⊥OC.
    又∵AC=8cm,BD=6cm,∴OA=OC=4cm,OB=OD=3cm.
    在直角△BOC中,由勾股定理得:BC5(cm).
    ∵点E是AB的中点,∴OE是△ABC的中位线,∴OEcm.
    本题考查了菱形的性质及三角形中位线定理.求出菱形的边长是解题的关键.
    26、(1)y1=x+2,y2=x+20(2)见解析
    【解析】
    (1)由图像可知,l1的函数为一次函数,则设y1=k1x+b1.由图象知,l1过点(0,2)、(500,17),能够得出l 1的函数解析式.同理可以得出l2的函数解析式.
    (2)由图像可知l1、 l2的图像交于一点,那么交点处白炽灯和节能灯的费用相同,即x+2=x+20,由此得出x=1000时费用相同;x<1000时,使用白炽灯省钱;x>1000时,使用节能灯省钱.
    【详解】
    (1)设l1的函数解析式为y1=k1x+b1,
    由图象知,l1过点(0,2)、(500,17),
    可得方程组,解得,
    故,l1的函数关系式为y1=x+2;
    设l2的函数解析式为y2=k2x+b2,
    由图象知,l2过点(0,20)、(500,26),
    可得方程组,解得,
    y2=x+20;
    (2)由题意得,x+2=x+20,解得x=1000,
    故,①当照明时间为1000小时时,两种灯的费用相同;
    ②当照明时间超过1000小时,使用节能灯省钱.
    ③当照明时间在1000小时以内,使用白炽灯省钱.
    本题主要考查求一次函数的解析式、一次函数在实际生活中的应用.一次函数为中考重点考查内容,熟练掌握求一次函数解析式的方法是解决本题的关键.
    题号





    总分
    得分
    批阅人
    一户居民每月用电量x(度)
    电费价格(元/度)
    0.48
    0.53
    0.78
    x
    -1
    0
    1
    y
    1
    m
    -1

    相关试卷

    陈经纶中学2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】:

    这是一份陈经纶中学2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省苏州市景范中学数学九年级第一学期开学学业质量监测试题【含答案】:

    这是一份2024年江苏省苏州市景范中学数学九年级第一学期开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省江阴市河塘中学九年级数学第一学期期末监测模拟试题含答案:

    这是一份2023-2024学年江苏省江阴市河塘中学九年级数学第一学期期末监测模拟试题含答案,共9页。试卷主要包含了若反比例函数y=的图象经过点,已知3x=4y,设,,是抛物线,下列各数中,属于无理数的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map