江苏南京建邺区五校联考2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式的值为零,则x等于( )
A.0B.2C.±2D.﹣2
2、(4分) 某班五个课外小组的人数分布如图所示,若绘制成扇形统计图,则第二小组在扇形统计图中对应的圆心角度数是( )
A.45°B.60°C.72°D.120°
3、(4分)一个无人超市仓库的货物搬运工作全部由机器人和机器人完成,工作记录显示机器人比机器人每小时多搬运50件货物.机器人搬运2000件货物与机器人搬运1600件货物所用的时间相等,则机器人每小时搬运货物( )
A.250件B.200件C.150件D.100件
4、(4分)二次根式有意义的条件是( )
A.x>3B.x>-3C.x≥3D.x≥-3
5、(4分)使分式有意义的的值是( )
A.B.C.D.
6、(4分)如图,在△ABC中,点D、E分别是AB、AC的中点、DE=3,那么BC的长为( )
A.4B.5C.6D.7
7、(4分)下列从左到右的变形,是分解因式的是( )
A.B.
C.D.
8、(4分)宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为( )
A.1.2×10﹣7米B.1.2×107米C.1.2×10﹣6米D.1.2×106米
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________
10、(4分)正方形,,,...按如图的方式放置,点,,...和点,,...分别在直线和轴上,则点的坐标为_______.
11、(4分)若,则m=__
12、(4分)已知分式,当x=1时,分式无意义,则a=___________.
13、(4分)一列数,,,,其中,(为不小于的整数),则___.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′= ,则称点Q为点P的“可控变点”。例如:点(1,2)的“可控变点”为点(1,2).
结合定义,请回答下列问题:
(1)点(−3,4)的“可控变点”为点 ___.
(2)若点N(m,2)是函数y=x−1图象上点M的“可控变点”,则点M的坐标为___;
(3)点P为直线y=2x−2上的动点,当x⩾0时,它的“可控变点”Q所形成的图象如图所示(实线部分含实心点).请补全当x<0时,点P的“可控变点”Q所形成的图象.
15、(8分)如图,在平面直角坐标系xOy中,点A( ,0),点B(0,1),直线EF与x轴垂直,A为垂足。
(1)若线段AB绕点A按顺时针方向旋转到AB′的位置,并使得AB与AB′关于直线EF对称,请你画出线段AB所扫过的区域(用阴影表示);
(2)计算(1)中线段AB所扫过区域的面积。
16、(8分)如图,已知平行四边形ABCD的周长是32 cm,,,,E,F是垂足,且
(1)求的度数;
(2)求BE,DF的长.
17、(10分)如图,的对角线,相交于点,,是上的两点,并且,连接,.
(1)求证;
(2)若,连接,,判断四边形的形状,并说明理由.
18、(10分)已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.
如图,当点A旋转到时,请你直接写出AH与AB的数量关系;
如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若式子 有意义,则x的取值范围为___________.
20、(4分)把直线向上平移2个单位得到的直线解析式为:_______.
21、(4分)计算:= ____________.
22、(4分)如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为______.
23、(4分)如图,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=1.则GH的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)有20个边长为1的小正方形,排列形式如图所示,请将其分割,拼接成一个正方形,求拼接后的正方形的边长.
25、(10分)因式分解:2
26、(12分)如图,在平行四边形中,点,分别在边,的延长线上,且,分别与,交于点,.
求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分式的值是1的条件是:分子为1,分母不为1.
【详解】
∵x2-4=1,
∴x=±2,
当x=2时,2x-4=1,∴x=2不满足条件.
当x=-2时,2x-4≠1,∴当x=-2时分式的值是1.
故选:D.
本题考查了分式值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.
2、D
【解析】
根据条形统计图即可得第二小组所占总体的比值,再乘以360°即可.
【详解】
解:第二小组在扇形统计图中对应的圆心角度数是360°×=120°,
故选D.
本题考查的是条形统计图和扇形统计图的知识,难度不大,属于基础题型,明确求解的方法是解题的关键.
3、A
【解析】
首先由题意得出等量关系,即A型机器人搬运10件货物与B型机器人搬运1600件货物所用时间相等,列出分式方程,从而解出方程,最后检验并作答.
【详解】
解:设B型机器人每小时搬运x件货物,则A型机器人每小时搬运(x+50)件货物.
依题意列方程得:
,
解得:x=1.
经检验x=1是原方程的根且符合题意.
当x=1时,x+50=2.
∴A型机器人每小时搬运2件.
故选A.
本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系,②列出方程,③解出分式方程,④检验,⑤作答.注意:分式方程的解必须检验.
4、D
【解析】
根据二次根式被开方数大于等于0即可得出答案.
【详解】
根据被开方数大于等于0得,有意义的条件是
解得:
故选:D
本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
5、D
【解析】
分式有意义的条件是分母不等于0,即x﹣1≠0,解得x的取值范围.
【详解】
若分式有意义,则x﹣1≠0,解得:x≠1.
故选D.
本题考查了分式有意义的条件:当分母不为0时,分式有意义.
6、C
【解析】
根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有DE=BC,从而求出BC.
【详解】
解:∵D、E分别是AB、AC的中点.
∴DE是△ABC的中位线,
∴BC=2DE,
∵DE=3,
∴BC=2×3=1.
故选:C.
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
7、A
【解析】
根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.
【详解】
是把一个多项式化为几个整式的积的形式,所以A正确;
中含有分式,所以B错误;
不是把一个多项式化为几个整式的积的形式,所以C错误;
不是把一个多项式化为几个整式的积的形式,所以D错误.
本题考查分解因式的定义,解题的关键是掌握分解因式的定义.
8、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
解:0.00000012米=1.2×10﹣7米,故答案为A。
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20或22
【解析】
根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.
【详解】
根据题意可得矩形的长为7
当形成的直角等腰三角形的直角边为3时,则矩形的宽为3
当形成的直角等腰三角形的直角边为4时,则矩形的宽为4
矩形的宽为3或4
周长为或
故答案为20或22
本题主要考查等腰直角三角形的性质,关键在于确定宽的长.
10、
【解析】
按照由特殊到一般的思路,先求出点A 1、B 1;A 2、B 2;A 3、B 3;A 4、B 4的坐标,得出一般规律,进而得出点A n、Bn的坐标,代入即得答案.
【详解】
解:∵直线,x=0时,y=1,∴OA 1=1,
∴点A 1的坐标为(0,1),点B 1的坐标为(1,1),
∵对直线,当x=1时,y=2,∴A 2C 1=2,
∴点A 2的坐标为(1,2),点B 2的坐标为(3,2),
∵对直线,当x=3时,y=4,∴A 3C 2=4,
∴点A 3的坐标为(3,4),点B 3的坐标为(7,4),
∵对直线,当x=7时,y=8,∴A 4C 3=8,
∴点A 4的坐标为(7,8),点B 4的坐标为(15,8),
……
∴点A n的坐标为(2 n ﹣1﹣1,2 n ﹣1), 点B n的坐标为(2 n ﹣1,2 n ﹣1)
∴点的坐标为(2 2019 ﹣1,2 2018)
本题主要考查一次函数图象上点的坐标特征、正方形的性质和规律的探求,解决这类问题一般从特殊情况入手,找出数量上的变化规律,从而推出一般性的结论.
11、1
【解析】
利用多项式乘以多项式计算(x-m)(x+2)可得x2+(2-m)x-2m,然后使x的一次项系数相等即可得到m的值.
【详解】
∵(x-m)(x+2)=x2+(2-m)x-2m,
∴2-m=-6,
m=1,
故答案是:1.
考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
12、1
【解析】
把x=1代入分式,根据分式无意义得出关于a的方程,求出即可
【详解】
解:把x=1代入得:
,
此时分式无意义,
∴a-1=0,
解得a=1.
故答案为:1.
本题考查了分式无意义的条件,能得出关于a的方程是解此题的关键.
13、
【解析】
把a1,a2,a3代入代数式计算,找出规律,根据规律计算.
【详解】
a1=,
,
,
……,
2019÷3=673,
∴a2019=-1,
故答案为:-1.
本题考查的是规律型:数字的变化类问题,正确找出数字的变化规律是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)(−3,−4);(2)(2)(3,2)或(−1,−2);(3)见解析;
【解析】
(1)根据“可控变点”的定义可得点(-3,4)的“可控变点”的坐标;
(2)分两种情况进行讨论:当m≥0时,点M的纵坐标为2,令2=x-1,则x=3,即M(3,2);当m<0时,点M的纵坐标为-2,令-2=x-1,则x=3,即M(-1,-2);
(3)根据P(x,2x-2),当x<0时,点P的“可控变点”Q为(x,-2x+2),可得Q的纵坐标为-2x+2,即Q的坐标符合函数解析式y=-2x+2,据此可得当x<0时,点P的“可控变点”Q所形成的图象.
【详解】
(1)根据“可控变点”的定义可得,点(−3,4)的“可控变点”为点(−3,−4);
故答案为:(−3,−4);
(2)∵点N(m,2)是函数y=x−1图象上点M的“可控变点”,
∴①当m⩾0时,点M的纵坐标为2,令2=x−1,则x=3,即M(3,2);
②当m<0时,点M的纵坐标为−2,令−2=x−1,则x=3,即M(−1,−2);
∴点M的坐标为(3,2)或(−1,−2);
故答案为:(3,2)或(−1,−2);
(3)∵点P为直线y=2x−2上的动点,
∴P(x,2x−2),
当x<0时,点P的“可控变点”Q为(x,−2x+2),
即Q的纵坐标为−2x+2,即Q的坐标符合函数解析式y=−2x+2,
∴当x<0时,点P的“可控变点”Q所形成的图象如下图;
此题考查一次函数图象上点的坐标特征,解题关键在于分情况讨论理解题意.
15、(1)见解析;(2).
【解析】
(1)将线段AB绕点A按顺时针方向旋转到AB′的位置,使B′的坐标为(2,1);
(2)利用扇形面积公式求出线段AB所扫过区域的面积即可.
【详解】
(1)如图所示;
(2)∵点A(,0),点B(0,1),
∴BO=1,AO=,
∴AB= =2,
∴tan∠BAO=,
∴∠BAO=30°,
∵线段AB绕点A按顺时针方向旋转到AB′的位置,
∴∠1=30°,
∴∠BAB′=180°−30°−30°=120°,
阴影部分的面积为: .
此题考查作图-旋转变换,扇形面积的计算,解题关键在于掌握作图法则
16、(1)∠C=60°;(2)BE=5cm,DF=3cm.
【解析】
(1)结合已知条件,由四边形的内角和为360°即可解答;(2)根据平行四边形的性质结合已知条件求得AB=10cm,BC=6cm.再根据30°角直角三角形的性质即可求解.
【详解】
(1)∵AE⊥BC,AF⊥CD,
∴∠AFD=∠AEB=90°,
∴∠EAF+∠C=360°﹣90°﹣90°=180°.
又∵∠EAF=2∠C,
∴∠C=60°.
(2)∵▱ABCD的周长是32cm,,
∴AB=10cm,BC=6cm.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABE=∠C=60°,
在Rt△ABE中,BE=AB,
∵AB=10 cm,
∴BE=5 cm,
同理DF=3 cm.
∴BE=5cm,DF=3cm.
本题考查了平行四边形的性质及30°角直角三角形的性质,熟练运用有关性质是解决问题的关键.
17、(1)详见解析;(2)四边形BEDF是矩形,理由详见解析.
【解析】
(1)已知四边形ABCD是平行四边形,根据平行四边形的性质可得OA=OC,OB=OD,由AE=CF即可得OE=OF,利用SAS证明△BOE≌△DOF, 根据全等三角形的性质即可得BE=DF;(2)四边形BEDF是矩形.由(1)得OD=OB,OE=OF, 根据对角线互相平方的四边形为平行四边形可得四边形BEDF是平行四边形, 再由BD=EF,根据对角线相等的平行四边形为矩形即可判定四边形EBFD是矩形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OE=OF,
在△BOE和△DOF中,
,
∴△BOE≌△DOF(SAS),
∴BE=DF;
(2)四边形BEDF是矩形.理由如下:
如图所示:
∵OD=OB,OE=OF,
∴四边形BEDF是平行四边形,
∵BD=EF,
∴四边形EBFD是矩形.
本题考查了平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.
18、;(2)数量关系还成立.证明见解析.
【解析】
(1)由题意可证△ABM≌△ADN,可得AM=AN,∠BAM=∠DAN=22.5°,再证△ABM≌△AMH可得结论;
(2)延长CB至E,使BE=DN,可证△ABE≌△ADN,可得AN=AE,∠BAE=∠DAN,可得∠EAM=∠MAN=45°且AM=AM,AE=AN,可证△AME≌△AMN,则结论可证.
【详解】
,理由如下:
是正方形
,且,
≌,
,,
,
,
,
,,
,
且,,
≌,
;
数量关系还成立.
如图,延长CB至E,使,
,,,
≌,
,,
,
即,
且,,
≌,
,≌,
,
.
本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,正确添加辅助线构建全等三角形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥5
【解析】
根据二次根式的性质,即可求解.
【详解】
因为式子有意义,
可得:x-5≥1,
解得:x≥5,
故选A.
主要考查了二次根式的意义.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于1.
20、
【解析】
直接根据一次函数图象与几何变换的有关结论求解.
【详解】
直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.
故答案为y=2x+2.
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
21、1.
【解析】
试题解析:原式
故答案为1.
22、.
【解析】
解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,
∵A、C关于BD对称,
∴当P与P′重合时,PA′+P′E的值最小,
∵菱形ABCD的周长为16,面积为8,
∴AB=BC=4,AB·CE′=8,
∴CE′=2,由此求出CE的长=2.
故答案为2.
考点:1、轴对称﹣最短问题,2、菱形的性质
23、1
【解析】
如图,过点F作于M,过点G作于N,设 GN、EF交点为P,根据正方形的性质可得,再根据同角的余角相等可得,然后利用“角边角”证明,根据全等三角形对应边相等可得,然后代入数据即可得解.
【详解】
如图,过点F作于M,过点G作于N,设 GN、EF交点为P
∵四边形ABCD是正方形
∴
∴
∵
∴
∴
在△EFM和△HGN中
∴
∴
∵
∴
即GH的长为1
故答案为:1.
本题考查了矩形的线段长问题,掌握正方形的性质、全等三角形的性质以及判定定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
利用正方形的面积公式先求出拼接后的正方形的边长,观察边长可知是直角边长分别为2和4的直角三角形的斜边,由此可对图形进行分割,然后再进行拼接即可.
【详解】
因为20个小正方形的面积是20,
所以拼接后的正方形的边长=,
22+42=20,所以如图①所示进行分割,
拼接的正方形如图②所示.
本题考查作图-应用与设计,正方形的判定和性质等知识,解题的关键是学会用数形结合的思想解决问题.
25、2(a-b)2
【解析】
先提公因式在利用公式法进行因式分解即可.
【详解】
解:原式=2(a2-2ab+b2)
=2(a-b)2
本题考查的是因式分解,能够熟练运用多种方法进行因式分解是解题的关键.
26、见详解
【解析】
利用平行四边形的性质,结合条件可得出AF=EC,再利用全等三角形的判定与性质定理,即可得到结论.
【详解】
∵在平行四边形中,
∴AD=BC,∠A=∠C,AD∥BC,
∴∠E=∠F,
∵,
∴AF=EC,
在∆AGF与∆CHE中,
∵,
∴∆AGF≅ ∆CHE(ASA),
∴AG=CH.
本题主要考查平行四边形的性质定理以及三角形全等的判定和性质定理,掌握平行四边形的性质以及ASA证三角形全等,是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2025届江苏省南京建邺区六校联考数学九上开学考试模拟试题【含答案】: 这是一份2025届江苏省南京建邺区六校联考数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南京市秦淮区四校数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京市秦淮区四校数学九年级第一学期开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南京市建邺区三校联合数学九上开学调研试题【含答案】: 这是一份2024-2025学年江苏省南京市建邺区三校联合数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。