|试卷下载
终身会员
搜索
    上传资料 赚现金
    吉林省伊通满族自治县2024年数学九上开学统考模拟试题【含答案】
    立即下载
    加入资料篮
    吉林省伊通满族自治县2024年数学九上开学统考模拟试题【含答案】01
    吉林省伊通满族自治县2024年数学九上开学统考模拟试题【含答案】02
    吉林省伊通满族自治县2024年数学九上开学统考模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省伊通满族自治县2024年数学九上开学统考模拟试题【含答案】

    展开
    这是一份吉林省伊通满族自治县2024年数学九上开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的面积是( )
    A.24B.30C.40D.48
    2、(4分)代数式2x,,x+,中分式有( )
    A.1个B.2个C.3个D.4个
    3、(4分)若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣l上,则常数b=( )
    A.B.2C.﹣1D.1
    4、(4分)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月约节水情况.见表:
    请你估计这400名同学的家庭一个月节约用水的总量大约是( )
    A.130m3B.135m3C.6.5m3D.260m3
    5、(4分)下列二次根式中,最简二次根式的是( )
    A.B.C.D.
    6、(4分)用反证法证明“a>b”时应先假设( )
    A.a≤bB.a<bC.a=bD.a≠b
    7、(4分)如图,菱形中,,点是边上一点,占在上,下列选项中不正确的是( )
    A.若,则
    B.若, 则
    C.若,则的周长最小值为
    D.若,则
    8、(4分)一个直角三角形的两边长分别为2和,则第三边的长为( )
    A.1B.2C.D.3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,为正三角形,是的角平分线,也是正三角形,下列结论:①:②:③,其中正确的有________(填序号).
    10、(4分)已知在等腰梯形中,,,对角线,垂足为,若,,梯形的高为______.
    11、(4分)要使分式的值为0,则x的值为____________.
    12、(4分)若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为________.
    13、(4分)已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)为了满足学生的物质需求,我市某中学到红旗超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:
    已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
    (1)求的值;
    (2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于5200元,且不超5280元,问该红旗超市有几种进货方案?
    (3)在(2)的条件下,该红旗超市准备对甲种袋装食品进行优惠促销活动,决定对甲种袋装食品每袋优惠元出售,乙种袋装食品价格不变.那么该红旗超市要获得最大利润应如何进货?
    15、(8分)如图,已知点A、B、C、D的坐标分别为(-2,2),(一2,1),(3,1),(3,2),线段AD、AB、BC组成的图形记作G,点P沿D-A-B-C移动,设点P移动的距离为a,直线l:y=-x+b过点P,且在点P移动过程中,直线l随点P移动而移动,若直线l过点C,求
    (1)直线l的解析式;
    (2)求a的值.
    16、(8分)解方程组
    17、(10分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD的周长.
    18、(10分)菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.
    (1)如图1,求∠BGD的度数;
    (2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;
    (3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=4,求菱形ABCD的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在矩形ABCD中,AB=6,AD=4,过矩形ABCD的对角线交点O作直线分别交CD、AB于点E、F,连接AE,若△AEF是等腰三角形,则DE=______.
    20、(4分)李明的座位在第5排第4列,简记为(5,4),张扬的座位在第3排第2列,简记为,若周伟的座位在李明的前面相距2排,同时在他的右边相距2列,则周伟的座位可简记为___________________.
    21、(4分)某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.
    22、(4分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_____.
    23、(4分)若解分式方程产生增根,则m=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地轿车的平均速度大于货车的平均速度,如图,线段OA、折线BCD分别表示两车离甲地的距离单位:千米与时间单位:小时之间的函数关系.
    线段OA与折线BCD中,______表示货车离甲地的距离y与时间x之间的函数关系.
    求线段CD的函数关系式;
    货车出发多长时间两车相遇?
    25、(10分)如图,的对角线相交于点,直线EF过点O分别交BC,AD于点E、F,G、H分别为OB、OD的中点,求证:四边形GEHF是平行四边形.
    26、(12分)某班同学进行数学测验,将所得成绩(得分取整数)进行整理分成五组,并绘制成频数直方图(如图),请结合直方图提供的信息,回答下列问题:
    (1)该班共有多少名学生参加这次测验?
    (2)求1.5~2.5这一分数段的频数是多少,频率是多少?
    (3)若80分以上为优秀,则该班的优秀率是多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据菱形的面积等于对角线乘积的一半即可解决问题.
    【详解】
    ∵四边形ABCD是菱形,AC=6,BD=8,
    ∴菱形ABCD的面积=⋅AC⋅BD=×6×8=24.
    故选A.
    此题考查菱形的性质,解题关键在于计算公式.
    2、A
    【解析】
    直接利用分式的定义分析得出答案.
    【详解】
    解:代数式2x,,x+,中分式有:.
    故选A.
    本题考查了分式的定义,正确把握定义是解题关键.
    3、B
    【解析】
    【分析】直线解析式乘以2后和方程联立解答即可.
    【详解】因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣l上,
    直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0,
    所以﹣b=﹣2b+2,
    解得:b=2,
    故选B.
    【点睛】本题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.
    4、A
    【解析】
    先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.
    【详解】
    20名同学各自家庭一个月平均节约用水是:
    (0.2×2+0.25×4+0.3×6+0.4×7+0.5×1)÷20=0.325(m3),
    因此这400名同学的家庭一个月节约用水的总量大约是:400×0.325=130(m3),
    故选A.
    5、A
    【解析】
    根据最简二次根式的条件进行分析.
    【详解】
    A.,是最简二次根式;
    B.,不是最简二次根式;
    C.,不是最简二次根式;
    D.,不是最简二次根式;
    故选:A
    满足下列条件的二次根式,叫做最简二次根式:
    (1)被开方数的因数是整数,因式是整式;
    (2)被开方数中不含能开得尽方的因数或因式
    6、A
    【解析】
    熟记反证法的步骤,直接得出答案即可,要注意的是a>b的反面有多种情况,需一一否定.
    【详解】
    用反证法证明“a>b”时,应先假设a≤b.
    故选:A.
    本题考查了反证法,解此题关键要懂得反证法的意义及步骤.
    7、D
    【解析】
    A.正确,只要证明即可;
    B.正确,只要证明进而得到是等边三角形,进而得到结论;
    C.正确,只要证明得出是等边三角形,因为的周长为,所以等边三角形的边长最小时,的周长最小,只要求出的边长最小值即可;
    D.错误,当时,,由此即可判断.
    【详解】
    A正确,理由如下:
    都是等边三角形,
    B正确,理由如下:
    是等边三角形,
    同理
    是等边三角形,
    C正确,理由如下:
    是等边三角形,
    的周长为:

    等边三角形边长最小时,的周长最小,
    当时,DE最小为,
    的周长最小值为.
    D错误,当时,,此时时变化的不是定值,故错误.
    故选D.
    本题主要考查全等的判定的同时,结合等边三角形的性质,涉及到最值问题,仔细分析图形,明确图形中的全等三角形是解决问题的关键.
    8、C
    【解析】
    本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边2既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即2是斜边或直角边.
    【详解】
    当2和均为直角边时,第三边=;
    当2为斜边, 为直角边,则第三边=,
    故第三边的长为或
    故选C.
    此题考查勾股定理,解题关键在于分类讨论第三条边的情况.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、①②③
    【解析】
    由等边三角形的性质可得AE=AD,∠CAD=∠BAD=30°,AD⊥BC,可得∠BAE=∠BAD=30°,且AE=AD,可得EF=DF,“SAS”可证△ABE≌△ABD,可得BE=BD,即可求解.
    【详解】
    解:∵△ABC和△ADE是等边三角形,AD为∠BAC的角平分线,
    ∴AE=AD,∠CAD=∠BAD=30°,AD⊥BC,
    ∴∠BAE=∠BAD=30°,且AE=AD,
    ∴EF=DF
    ∵AE=AD,∠BAE=∠BAD,AB=AB
    ∴△ABE≌△ABD(SAS),
    ∴BE=BD
    ∴正确的有①②③
    故答案为:①②③
    本题考查了全等三角形的证明和全等三角形对应边相等的性质,考查了等边三角形各边长、各内角为60°的性质,本题中求证△ABE≌△ABD是解题的关键.
    10、
    【解析】
    过作交的延长线于,构造.首先求出是等腰直角三角形,从而推出与的关系.
    【详解】
    解:如图:过作交的延长线于,过作于.
    ,,
    四边形是平行四边形,
    ,,
    等腰梯形中,,

    ,,

    是等腰直角三角形,

    又,

    即梯形的高为.
    故答案为:.
    本题考查了等腰梯形性质,作对角线的平行线将上下底和对角线移到同一个三角形中是解题的关键,也是梯形辅助线常见作法.
    11、-2.
    【解析】
    分式的值为零的条件是分子等于0且分母不等于0,
    【详解】
    因为分式的值为0,
    所以x+2=0且x-1≠0,
    则x=-2,
    故答案为-2.
    12、1:1.
    【解析】
    根据相似三角形的周长的比等于相似比得出.
    【详解】
    解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:1,
    ∴△ABC与△DEF的周长比为1:1.
    故答案为:1:1.
    本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.
    13、1或3
    【解析】
    数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值
    【详解】
    解:连接AC和BD交于一点O,
    四边形ABCD为菱形
    垂直平分AC,



    点P在线段AC的垂直平分线上,即BD上
    在直角三角形APO中,由勾股定理得


    如下图所示,当点P在BO之间时,BP=BO-PO=2-1=1;
    如下图所示,当点P在DO之间时,BP=BO+PO=2+1=3
    故答案为:1或3
    本题主要考查了菱形的性质及勾股定理,熟练应用菱形的性质及勾股定理求线段长度是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)共有17种方案;(3)当时,有最大值,即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.
    【解析】
    (1)根据“用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同”列出方程并解答;
    (2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(800-x)袋,然后根据总利润列出一元一次不等式组解答;
    (3)设总利润为W,根据总利润等于两种绿色袋装食品的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.
    【详解】
    解:(1)依题意得:
    解得:,
    经检验是原分式方程的解;
    (2)设购进甲种绿色袋装食品袋,表示出乙种绿色袋装食品袋,根据题意得,
    解得:,
    ∵是正整数,,
    ∴共有17种方案;
    (3)设总利润为,则,
    ①当时,,随的增大而增大,
    所以,当时,有最大值,
    即此时应购进甲种绿色袋装食品256袋,乙种绿色袋装食品544袋;
    ②当时,,(2)中所有方案获利都一样;
    ③当时,,随的增大而减小,
    所以,当时,有最大值,
    即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.
    本题考查了分式方程与一元一次不等式组的综合应用。
    15、(3)y=-x+2;(2)当l过点C时,a的值为3或3.
    【解析】
    (3)将点D坐标代入y=-x+b,解出b,再代回即可得函数的解析式;
    (2)l过点C,点P的位置有两种:①点P位于点E时;②点P位于点C时;
    【详解】
    (3)当y=-x+b过点C(3,3)时,
    3=-3+b,
    ∴b=2.
    直线l的解析式为y=-x+2.
    (2)∵点A,B,C,D的坐标分别为(-2,2),(-2,3),(3,3),(3,2).
    ∴AD=BC=5,AB=3,
    ∵直线l的解析式为y=-x+2.
    ∴由得l与AD的交点E为(2,2)
    ∴DE=3.
    ∴①当l过点C时,点P位于点E时,a=DE=3;
    ②当l过点C时,点P位于点C时,a=AD+AB+BC=5+3+5=3.
    ∴当l过点C时,a的值为3或3.
    本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,本题中等难度.
    16、原方程组的解为:,
    【解析】
    把第一个方程代入第二个方程,得到一个关于x的一元二次方程,解方程求出x,把x代入第一个方程,求出y即可.
    【详解】
    解:
    把①代入②得:x2-4x(x+1)+4(x+1)2=4,
    x2+4x=0,
    解得:x=-4或x=0,
    当x=-4时,y=-3,
    当x=0时,y=1,
    所以原方程组的解为:,.
    故答案为:,.
    本题考查了解高次方程,降次是解题的基本思想.
    17、1
    【解析】
    首先根据平行四边形的性质和对角线的和求得AO+OD的长,然后根据BC的长求得AD的长,从而求得△AOD的周长.
    【详解】
    解:如图:
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=DO,
    ∵AC+BD=28,
    ∴AO+OD=14,
    ∵AD=BC=12,
    ∴△AOD的周长=AO+OD+AD=14+12=1.
    本题考查了平行四边形的性质,解题的关键是了解平行四边形的对角线互相平分,难度不大.
    18、(1)∠BGD=120°;(2)见解析;(3)S四边形ABCD=26.
    【解析】
    (1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
    (2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;
    (3)解直角三角形求出BC即可解决问题;
    【详解】
    (1)解:如图1﹣1中,
    ∵四边形ABCD是菱形,
    ∴AD=AB,
    ∵∠A=60°,
    ∴△ABD是等边三角形,
    ∴AB=DB,∠A=∠FDB=60°,
    在△DAE和△BDF中,

    ∴△DAE≌△BDF,
    ∴∠ADE=∠DBF,
    ∵∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,
    ∴∠BGD=180°﹣∠BGE=120°.
    (2)证明:如图1﹣2中,延长GE到M,使得GM=GB,连接CG.
    ∵∠MGB=60°,GM=GB,
    ∴△GMB是等边三角形,
    ∴∠MBG=∠DBC=60°,
    ∴∠MBD=∠GBC,
    在△MBD和△GBC中,

    ∴△MBD≌△GBC,
    ∴DM=GC,∠M=∠CGB=60°,
    ∵CH⊥BG,
    ∴∠GCH=30°,
    ∴CG=2GH,
    ∵CG=DM=DG+GM=DG+GB,
    ∴2GH=DG+GB.
    (3)如图1﹣2中,由(2)可知,在Rt△CGH中,CH=4,∠GCH=30°,
    ∴tan30°=,
    ∴GH=4,
    ∵BG=6,
    ∴BH=2,
    在Rt△BCH中,BC=,
    ∵△ABD,△BDC都是等边三角形,
    ∴S四边形ABCD=2•S△BCD=2××()2=26.
    本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、或1
    【解析】
    连接AC,如图1所示:由矩形的性质得到∠D=90°,AD=BC=4,OA=OC,AB∥DC,求得∠OAF=∠OCE,根据全等三角形的性质得到AF=CE,若△AEF是等腰三角形,分三种情讨论:
    ①当AE=AF时,如图1所示:设AE=AF=CE=x,则DE=6-x,根据勾股定理即可得到结论;
    ②当AE=EF时,作EG⊥AF于G,如图1所示:设AF=CE=x,则DE=6-x,AG=x,列方程即可得到结论;
    ③当AF=FE时,作FH⊥CD于H,如图3所示:设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,根据勾股定理即可得到结论.
    【详解】
    解:连接AC,如图1所示:
    ∵四边形ABCD是矩形,
    ∴∠D=90°,AD=BC=4,OA=OC,AB∥DC,
    ∴∠OAF=∠OCE,
    在△AOF和△COE中,,
    ∴△AOF≌△COE(ASA),
    ∴AF=CE,
    若△AEF是等腰三角形,分三种情讨论:
    ①当AE=AF时,如图1所示:
    设AE=AF=CE=x,则DE=6-x,
    在Rt△ADE中,由勾股定理得:41+(6-x)1=x1,
    解得:x=,即DE=;
    ②当AE=EF时,
    作EG⊥AF于G,如图1所示:
    则AG=AE=DE,
    设AF=CE=x,则DE=6-x,AG=x,
    ∴x=6-x,解得:x=4,
    ∴DE=1;
    ③当AF=FE时,作FH⊥CD于H,如图3所示:
    设AF=FE=CE=x,则BF=6-x,则CH=BF=6-x,
    ∴EH=CE-CH=x-(6-x)=1x-6,
    在Rt△EFH中,由勾股定理得:41+(1x-6)1=x1,
    整理得:3x1-14x+51=0,
    ∵△=(-14)1-4×3×51<0,
    ∴此方程无解;
    综上所述:△AEF是等腰三角形,则DE为或1;
    故答案为:或1.
    此题考查矩形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质,根据勾股定理得出方程是解题的关键,注意分类讨论.
    20、(3,6)
    【解析】
    先求出周伟所在的排数与列数,再根据第一个数表示排数,第二个数表示列数解答.
    【详解】
    解:∵周伟的座位在李明的前面相距2排,同时在他的右边相距2列,
    ∴周伟在第3排第6列,
    ∴周伟的座位可简记为(3,6).
    故答案为:(3,6).
    本题考查坐标确定位置,读懂题目信息,理解有序数对的两个数的实际意义是解题关键.
    21、13
    【解析】
    试题解析:
    故答案为
    点睛:题目主要考查加权平均数.分别用单价乘以相应的百分比然后相加,计算即可得解.
    22、.
    【解析】
    连接BD,根据菱形的对角线平分一组对角线可得∠BAD=∠ADC=60°,然后判断出△ABD是等边三角形,连接DE,根据轴对称确定最短路线问题,DE与AC的交点即为所求的点P,PE+PB的最小值=DE,然后根据等边三角形的性质求出DE即可得解.
    【详解】
    如图,连接BD,
    四边形ABCD是菱形,
    ∠BAD=∠ADC=×120°=60°
    AB=AD(菱形的邻边相等),
    △ABD是等边三角形,
    连接DE,
    B、D关于对角AC对称,
    DE与AC的交点即为所求的点P, PE+PB的最小值=DE
    E是AB的中点,
    DE⊥AB
    菱形ABCD周长为16,
    AD=16÷4=4
    DE=×4=2
    故答案为2
    23、-5
    【解析】
    试题分析:根据分式方程增根的产生的条件,可知x+4=0,解得x=-4,然后把分式方程化为整式方程x-1=m,解得m=-5
    故答案为-5.
    二、解答题(本大题共3个小题,共30分)
    24、(1)线段OA表示货车货车离甲地的距离y与时间x之间的函数关系;(2);(3)货车出发小时两车相遇.
    【解析】
    (1)根据题意可以分别求得两个图象中相应函数对应的速度,从而可以解答本题;
    (2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解;
    (3)根据题意可以求得OA对应的函数解析式,从而可以解答本题.
    【详解】
    线段OA表示货车货车离甲地的距离y与时间x之间的函数关系,
    理由:千米时,,
    ,轿车的平均速度大于货车的平均速度,
    线段OA表示货车离甲地的距离y与时间x之间的函数关系,
    故答案为OA;
    设CD段函数解析式为,
    ,在其图象上,
    ,解得,
    段函数解析式:;
    设线段OA对应的函数解析式为,
    ,得,
    即线段OA对应的函数解析式为,
    ,解得,
    即货车出发小时两车相遇.
    本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    25、见解析.
    【解析】
    通过证明△EOB≌△FOD得出EO=FO,结合G、H分别为OB、OD的中点,可利用对角线互相平分的四边形是平行四边形进行证明.
    【详解】
    证明:∵四边形ABCD为平行四边形,
    ∴BO=DO,AD=BC且AD∥BC.
    ∴∠ADO=∠CBO.
    又∵∠EOB=∠FOD,
    ∴△EOB≌△FOD(ASA).
    ∴EO=FO.
    又∵G、H分别为OB、OD的中点,
    ∴GO=HO.
    ∴四边形GEHF为平行四边形.
    本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
    26、(1)50;(2)频数:10 频率:0.2;(3)优秀率:36%
    【解析】
    (1)将统计图中的数据进行求和计算可得答案;
    (2)由图可得频数,根据频率等于频数除以总数进行计算可得答案;
    (3)根据直方图可得80分以上的优秀人数,再进一步计算百分比.
    【详解】
    解:(1)根据题意,该班参加测验的学生人数为4+10+18+12+6=50(人),
    答:该班共有50名学生参加这次测验;
    (2)由图可得:1.5~2.5这一分数段的频数为10,频率为10÷50=0.2;
    (3)由图可得:该班的优秀人数为12+6=18人,
    则该班的优秀率为:18÷50×100%=36%,
    答:该班的优秀率是36%.
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    题号





    总分
    得分
    节水量/m3
    0.2
    0.25
    0.3
    0.4
    0.5
    家庭数/个
    2
    4
    6
    7
    1


    进价(元/袋)
    售价(元/袋)
    20
    13
    相关试卷

    吉林省舒兰市2024-2025学年数学九上开学统考模拟试题【含答案】: 这是一份吉林省舒兰市2024-2025学年数学九上开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    吉林省前郭县联考2024-2025学年九上数学开学统考模拟试题【含答案】: 这是一份吉林省前郭县联考2024-2025学年九上数学开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    吉林省大安县联考2025届九上数学开学统考模拟试题【含答案】: 这是一份吉林省大安县联考2025届九上数学开学统考模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map