吉林省实验中学2024-2025学年数学九年级第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,将一个含角的直角三角板绕点逆时针旋转,点的对应点是点,若点、、在同一条直线上,则三角板旋转的度数是( )
A.B.C.D.
2、(4分)如图,四边形ABCD中,对角线AC与BD相交于O,不能判定四边形ABCD是平行四边形的是( )
A.AB∥CD,AO=COB.AB∥DC,∠ABC=∠ADC
C.AB=DC,AD=BCD.AB=DC,∠ABC=∠ADC
3、(4分)如图,平行四边形ABCD中,∠A的平分线AE交CD于E, AB=5,BC=3,则EC的长( )
A.2B.3C.4D.2.5
4、(4分)使分式无意义,则x的取值范围是( )
A.x ≠ 1B.x=1C.x<1D.x ≠-1
5、(4分)下列命题是假命题的是( )
A.四边都相等的四边形为菱形B.对角线互相平分的四边形为平行四边形
C.对角线相等的平行四边形为矩形D.对角线互相垂直且相等的四边形为正方形
6、(4分)为了解学生的体能情况,抽取某学校同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为( )
A.5
B.10
C.15
D.20
7、(4分)如图,在中,,,,为边上一动点,于点,于点,则的最小值为( )
A.2.4B.3C.4.8D.5
8、(4分)如图,将点P(-1,3)向右平移n个单位后落在直线y=2x-1上的点P′处,则n等于( )
A.2B.C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:= .
10、(4分)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF,若△ABC的周长为10,则△DEF的周长为_______________.
11、(4分)方程的根为________.
12、(4分)如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比他爸爸矮0.3m,则她的影长为________m.
13、(4分)如图,在的两边上分别截取、,使,分别以点、为圆心,长为半径作弧,两弧交于点;连接、、、.若,四边形的周长为,则的长为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,
求∠DAE的度数.
15、(8分)问题背景:对于形如这样的二次三项式,可以直接用完全平方公式将它分解成,对于二次三项式,就不能直接用完全平方公式分解因式了.此时常采用将加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:
=
====
问题解决:
(1)请你按照上面的方法分解因式:;
(2)已知一个长方形的面积为,长为,求这个长方形的宽.
16、(8分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.
(1)证明:BE=CF.
(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
17、(10分)如图,是的中线,,交于点,是的中点,连接.
(1)求证:四边形是平行四边形;
(2)若四边形的面积为,请直接写出图中所有面积是的三角形.
18、(10分)任丘市举办一场中学生乒乓球比赛,比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分费用与参加比赛的人数(x)人成正比.当x=20时,y=1600;当x=30时,y=1.
(1)求y与x之间的函数关系式;
(2)如果承办此次比赛的组委会共筹集;经费6350元,那么这次比赛最多可邀请多少名运动员参赛?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.
20、(4分)已知△ABC的周长为4,顺次连接△ABC三边的中点构成的新三角形的周长为__________.
21、(4分)如图,是内的一点,,点分别在的两边上,周长的最小值是____.
22、(4分)函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k=______,b=____.
23、(4分)在平面直角坐标系中,P(2,﹣3)关于x轴的对称点是_____
二、解答题(本大题共3个小题,共30分)
24、(8分)列方程解题:据专家预测今年受厄尔尼诺现象影响,我国大部分地区可能遇到洪涝灾害.进入防汛期前,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
“你们是用9天完成4800米长的大坝加固任务的”?
“我们加固600米后采用新的加固模式,这样每天加固长度是原来的2倍”,
通过这段对话请你求出该地驻军原来每天加固的米数.
25、(10分)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.
26、(12分) (1)分式化简()÷;
(2)若(1)中a为正整数,分式的值也为正整数,请直接写出所有符合条件的a的值
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.
【详解】
解:旋转角是
故选:D.
本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.
2、D
【解析】
【分析】根据平行四边形的判定定理逐项进行分析即可得.
【详解】A、∵AB//CD,∴∠ABO=∠CDO,又∵∠AOB=∠COD,AO=OC,∴△AOB≌△COD,∴AB=CD,∴ABCD,∴四边形ABCD是平行四边形,故不符合题意;
B、∵AB//CD,∴∠ABO=∠CDO,又∵∠ABC=∠ADC,∴∠CBD=∠ADB,∴AD//BC,∴四边形ABCD是平行四边形,故不符合题意;
C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故不符合题意;
D、AB=DC,∠ABC=∠ADC,不能得到四边形ABCD是平行四边形,故符合题意,
故选D.
【点睛】本题考查了平行四边形的判定,关键是掌握判定定理:
(1)两组对边分别平行的四边形是平行四边形.
(2)两组对边分别相等的四边形是平行四边形.
(3)一组对边平行且相等的四边形是平行四边形.
(4)两组对角分别相等的四边形是平行四边形.
(5)对角线互相平分的四边形是平行四边形.
3、A
【解析】
根据平行四边形的性质可得AB=CD=5,AD=BC=3,AB∥CD,然后根据平行线的性质可得∠EAB=∠AED,然后根据角平分线的定义可得∠EAB=∠EAD,从而得出∠EAD=∠AED,根据等角对等边可得DA=DE=3,即可求出EC的长.
【详解】
解:∵四边形ABCD是平行四边形,AB=5,BC=3,
∴AB=CD=5,AD=BC=3,AB∥CD
∴∠EAB=∠AED
∵AE平分∠DAB
∴∠EAB=∠EAD
∴∠EAD=∠AED
∴DA=DE=3
∴EC=CD-DE=2
故选A.
此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.
4、B
【解析】
要是分式无意义,分母必等于0.
【详解】
∵分式无意义,
∴x-1=0,
解得x=1.
故选:B.
考核知识点:分式无意义的条件.熟记无意义的条件是关键.
5、D
【解析】
根据矩形、平行四边形、菱形、正方形的判定定理判断即可.
【详解】
A、根据菱形的判定定理可知是真命题;
B、根据平行四边形的判定定理可知是真命题;
C、根据矩形的的判定定理可知是真命题;
D、根据正方形的判定定理可知是假命题.
故选D
本题考查假命题的定义,涉及了矩形、平行四边形、菱形、正方形的判定定理.
6、B
【解析】
根据频率= ,即可求得总数,进而即可求得第四小组的频数.
【详解】
解:总数是5÷0.1=50人;
则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,
故选B.
本题考查频率的计算公式,解题关键是熟记公式.
7、C
【解析】
根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.
【详解】
如图,连接BD.
∵在△ABC中,AB=8,BC=6,AC=10,
∴AB2+BC2=AC2,即∠ABC=90°.
又∵DE⊥AB于点E,DF⊥BC于点F,
∴四边形EDFB是矩形,
∴EF=BD.
∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,
∴EF的最小值为4.8,
故选C.
此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.
8、C
【解析】
点向右平移得到,根据平移性质可设(),代入中可求出,则.
【详解】
∵点向右平移得到,
∴设(),代入,解得,
则 ,故答案选C.
本题考查了坐标系中函数图像平移的性质,以及利用函数解析式求点坐标,熟练掌握这些知识点是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
分析:.
10、1
【解析】
解:根据三角形的中位线定理可得DE=AC,EF=AB,DF=BC
所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为1
故答案为:1.
本题考查三角形的中位线定理.
11、
【解析】
运用因式分解法可解得.
【详解】
由得
故答案为:
考核知识点:因式分解法解一元二次方程.
12、1.2.
【解析】
根据实物与影子的比相等可得小芳的影长.
【详解】
∵爸爸身高1.8m,小芳比他爸爸矮0.3m,
∴小芳高1.5m,
设小芳的影长为xm,
∴1.5:x=1.8:2.1,
解得x=1.2,
小芳的影长为1.2m.
本题考查了平行投影的知识,解题的关键是理解阳光下实物的影长与影子的比相等.
13、
【解析】
OC与AB相交于D,如图,利用作法得到OA=OB=AC=BC,则可判断四边形OACB为菱形,根据菱形的性质得到OC⊥AB,AD=BD=1,OD=CD,然后利用勾股定理计算出OD,从而得到OC的长.
【详解】
解:OC与AB相交于D,如图,
由作法得OA=OB=AC=BC,
∴四边形OACB为菱形,
∴OC⊥AB,AD=BD=1,OD=CD,
∵四边形OACB的周长为8cm,
∴OB=2,
在Rt△OBD中,OD=,
∴OC=2OD=2cm.
故答案为.
本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
三、解答题(本大题共5个小题,共48分)
14、20°
【解析】
试题分析:首先根据三角形内角和定理求出∠BAC的度数,然后根据角平分线的性质得出∠EAC的度数,然后根据Rt△ADC的内角和定理求出∠DAC的度数,从而得出∠DAE的度数.
试题解析:∵∠B=36°,∠C=76° ∴∠BAC=68° ∵AE平分∠BAC ∴∠EAC=68°÷2=34°
∵AD是高线 ∴∠DAC=90°-76°=14° ∴∠DAE=∠EAC-∠DAC=34°-14°=20°.
考点:角度的计算
15、(1); (2)长为时这个长方形的宽为
【解析】
按照原题解题方法,进而借助完全平方公式以及平方差公式分解因式得出即可.
【详解】
(1)
=
=
=
=
=
(2) ∵
=
=
∴长为时这个长方形的宽为.
16、 (1)见解析;(2);(3)见解析
【解析】
试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;
(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;
(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.
试题解析:(1)证明:连接AC,
∵∠1+∠2=60°,∠3+∠2=60°,
∴∠1=∠3,
∵∠BAD=120°,
∴∠ABC=∠ADC=60°
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∴△ABC、△ACD为等边三角形
∴∠4=60°,AC=AB,
∴在△ABE和△ACF中,
,
∴△ABE≌△ACF.(ASA)
∴BE=CF.
(2)解:由(1)得△ABE≌△ACF,
则S△ABE=S△ACF.
故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,
是定值.
作AH⊥BC于H点,
则BH=2,
S四边形AECF=S△ABC
=
=
=;
(3)解:由“垂线段最短”可知,
当正三角形AEF的边AE与BC垂直时,边AE最短.
故△AEF的面积会随着AE的变化而变化,且当AE最短时,
正三角形AEF的面积会最小,
又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.
由(2)得,S△CEF=S四边形AECF﹣S△AEF
=﹣=.
点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.
17、(1)见解析;(2),,,
【解析】
(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;
(2)根据面积公式解答即可.
【详解】
证明:∵AD是△ABC的中线,
∴BD=CD,
∵AE∥BC,
∴∠AEF=∠DBF,
在△AFE和△DFB中,
,
∴△AFE≌△DFB(AAS),
∴AE=BD,
∴AE=CD,
∵AE∥BC,
∴四边形ADCE是平行四边形;
(2)∵四边形ABCE的面积为S,
∵BD=DC,
∴四边形ABCE的面积可以分成三部分,即△ABD的面积+△ADC的面积+△AEC的面积=S,
∴面积是S的三角形有△ABD,△ACD,△ACE,△ABE.
此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
18、 (1) 函数的解析式是:y=40x+800;(2) 这次比赛最多可邀请138名运动员.
【解析】
(1)根据叙述即可得到y与x之间的关系是一次函数关系,可以利用待定系数法求解;(2)在(1)求得的函数解析式中,令y=6350,即可求得x的值.
【详解】
解:(1)设y=kx+b,根据题意得:
解得:
则函数的解析式是:y=40x+800
(2)在y=40x+800中y=6350
解得:x=138
则这次比赛最多可邀请138名运动员.
本题考查待定系数法求一次函数解析式,解题关键是灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、乙
【解析】
试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.
考点:方差;折线统计图.
点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
20、2
【解析】
抓住三角形的中位线定理进行分析解答,根据题意的分析可以知道三角形的中位线平行于第三边,并且等于它的一半.
【详解】
根据题意可知:三角形的中位线平行于第三边,并且等于它的一半,所以三条中位线组成的三角形的周长为
故答案为:2.
考查三角形的中位线定理,三角形的中位线平行于第三边而且等于第三边的一半.
21、
【解析】
根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接OM、ON、MN,根据两点之间线段最短得到MN即为△PQR周长的最小值,然后证明△MON为等腰直角三角形,利用勾股定理求出MN即可.
【详解】
解:分别作P关于OA、OB的对称点M、N,连接OM、ON,连接MN交OA、OB交于Q、R,则△PQR符合条件且△PQR的周长等于MN,
由轴对称的性质可得:OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,
∴∠MON=∠MOP+∠NOP=2∠AOB=90°,
∴△MON为等腰直角三角形.
∴MN=,
所以△PQR周长的最小值为,
故答案为:.
此题考查了轴对称最短路径问题,等腰直角三角形的判定和性质以及勾股定理,根据题意构造出对称点,转化为直角三角形的问题是解题的关键.
22、 -2 3
【解析】试题解析:∵y=kx+b的图象平行于直线y=−2x,
∴k=−2,
则直线y=kx+b的解析式为y=−2x+b,
将点(0,3)代入得:b=3,
故答案为:−2,3.
23、(2,1)
【解析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.
【详解】
点P(2,﹣1)关于x轴的对称点的坐标是(2,1),
故答案为:2,1.
本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.
二、解答题(本大题共3个小题,共30分)
24、该建筑队原来每天加固300米.
【解析】
设原来每天加固x米,则采用新的加固技术后每天加固2x米,然后依据共用9天完成任务进行解答即可.
【详解】
解:设原来每天加固x米,则采用新的加固技术后每天加固2x米.
根据题意得:
解得:x=300,
经检验x=300是分式方程的解.
答:该建筑队原来每天加固300米.
本题主要考查的是分式方程的应用,找出题目的等量关系是解题的关键.
25、y=﹣x或y=﹣x.
【解析】
根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).
【详解】
解:直线l的解析式为:y=kx,
对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,
∴A(﹣4,0)、B(0,4),
∴OA=4,OB=4,
∴S△AOB=×4×4=8,
当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC=,
作CF⊥OA于F,CE⊥OB于E,
∴×AO•CF=,即×4×CF=,
∴CF=.
当y=时,x=﹣,
则=﹣k,
解得,k=﹣,
∴直线l的解析式为y=﹣x;
当直线l把△ABO的面积分为S△AOC:S△BOC=3:2时,同理求得CF=,
解得直线l的解析式为y=﹣x.
故答案为y=﹣x或y=﹣x.
本题考查的是待定系数法求一次函数的解析式,掌握待定系数法求一次函数解析式的一般步骤是解题的关键,涉及到三角形的面积公式及分类讨论的方法.
26、 (1);(2)a=3 .
【解析】
(1)根据分式的运算法则即可求出答案.
(2)根据题意即可求出答案.
【详解】
(1)原式=,
=
=;
(2)由题意可知:a+1=1或2或4,
且a+1≠0,a2﹣1≠0,a≠0,
∴a=3
本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
题号
一
二
三
四
五
总分
得分
吉林省德惠市第二十九中学2024-2025学年数学九年级第一学期开学经典试题【含答案】: 这是一份吉林省德惠市第二十九中学2024-2025学年数学九年级第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山西省实验中学九年级数学第一学期开学经典模拟试题【含答案】: 这是一份2024-2025学年山西省实验中学九年级数学第一学期开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省如皋实验数学九年级第一学期开学经典试题【含答案】: 这是一份2024-2025学年江苏省如皋实验数学九年级第一学期开学经典试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。