2025届吉林省长春市绿园区九年级数学第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,取A2C、B2C的中点A3、B3,依次取下去…利用这一图形,能直观地计算出( )
A.1B.C.D.
2、(4分)如图,直线y=﹣x+4与x轴、y轴分别交于点A、B、C是线段AB上一点,四边形OADC是菱形,则OD的长为( )
A.4.2B.4.8C.5.4D.6
3、(4分)若点A(2,4)在函数的图象上,则下列各点在此函数图象上的是( ).
A.(0,)B.(,0)C.(8,20)D.(,)
4、(4分)如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)
A.23.1B.21.9C.27.5D.30
5、(4分)电话每台月租费元,市区内电话(三分钟以内)每次元,若某台电话每次通话均不超过分钟,则每月应缴费(元)与市内电话通话次数之间的函数关系式是( )
A.B.
C.D.
6、(4分)已知二次函数(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为( )
A.或1B.或1C.或D.或
7、(4分)下列多项式中,不能运用公式法进行因式分解的是( )
A.x2+2xy+y2B.x2﹣9C.m2﹣n2D.a2+b2
8、(4分)已知点P(a,1)不在第一象限,则点Q(0,﹣a)在( )
A.x轴正半轴上B.x轴负半轴上
C.y轴正半轴或原点上D.y轴负半轴上
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若是李华同学在求一组数据的方差时,写出的计算过程,则其中的=_____.
10、(4分)在x2+(________)+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.
11、(4分)当1≤x≤5时,
12、(4分)已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.
13、(4分)函数y=2x-3的图象向下平移3个单位,所得新图象的函数表达式是___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.
15、(8分)如图,在平行四边形ABCD中,DB=DC,AE⊥BD于点E.若,求的度数.
16、(8分)如图,将的边延长至点,使,连接,,,交于点.
(1)求证:;
(2)若,求证:四边形是矩形.
17、(10分)解分式方程:﹣1=.
18、(10分)一次函数(a为常数,且).
(1)若点在一次函数的图象上,求a的值;
(2)当时,函数有最大值2,请求出a的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)我们把“宽与长的比等于黄金比的矩形称为黄金矩形”,矩形是黄金矩形,且,则__________.
20、(4分)矩形 内一点 到顶点 ,, 的长分别是 ,,,则 ________________.
21、(4分)一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),当n>0时,k的取值范围是_____.
22、(4分)如图,用若干个全等正五边形进行拼接,使相邻的正五边形都有一条公共边,这样恰好可以围成一圈,且中间形成一个正多边形,则这个正多边形的边数等于_________.
23、(4分)如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k=_____,满足条件的P点坐标是_________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知DB∥AC,E是AC的中点,DB=AE,连结AD、BE.
(1)求证:四边形DBCE是平行四边形;
(2)若要使四边形ADBE是矩形,则△ABC应满足什么条件?说明你的理由.
25、(10分)如图1,在中,,,、分别是、边上的高,、交于点,连接.
(1)求证:;
(2)求的度数;
(3)如图2,过点作交于点,探求线段、、的数量关系,并说明理由.
26、(12分)我们知道:等腰三角形两腰上的高相等.
(1)请你写出它的逆命题:______.
(2)逆命题是真命题吗?若是,请证明;若不是,请举出反例(要求:画出图形,写出已知,求证和证明过程).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.
【详解】
解:∵A1、B1分别是AC、BC两边的中点,且△ABC的面积为1,
∴△A1B1C
的面积为
∴四边形A1ABB1的面积=△ABC的面积-△A1B1C的面积
;
∴四边形A2A1B1B2的面积=的面积- 的面积
…
∴第n个四边形的面积
∴
故答案为:C
本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力.
2、B
【解析】
由直线的解析式可求出点B、A的坐标,进而可求出OA、OB的长,再利用勾股定理即可求出AB的长,由菱形的性质可得OE⊥AB,OE=DE,再根据直角三角形的面积可求出OE的长,进而可求出OD的长.
【详解】
解:∵直线y=﹣x+4与x轴、y轴分别交于点A、B,
∴点A(3,0)、点B(0,4),
∴OA=3,OB=4,
∴AB=,
∵四边形OADC是菱形,
∴OE⊥AB,OE=DE,
由直角三角形的面积得,
即3×4=5×OE.
解得:OE=2.4,
∴OD=2OE=4.8.
故选B.
本题考查了菱形的性质和一次函数与坐标轴的交点问题,难度不大,题目设计新颖,解题的关键是把求OD的长转化为求直角△AOB斜边上的高OE的长的2倍.
3、A
【解析】
∵点A(2,4)在函数y=kx-2的图象上,
∴2k-2=4,解得k=3,
∴此函数的解析式为:y=3x-2,
A选项:∵3×0-2=-2,∴此点在函数图象上,故本选项正确;
B选项:∵3×()-2=1.5≠0,∴此点在不函数图象上,故本选项错误;
C选项:∵3×(8)-2=22≠20,∴此点在不函数图象上,故本选项错误;
D选项:∵3×-2=-0.5≠,∴此点在不函数图象上,故本选项错误.
故选A.
4、B
【解析】
过点B作BN⊥AD,BM⊥DC垂足分别为N,M,设BN=x,则AN=2.4x,在Rt△ABN中,根据勾股定理求出x的值,从而得到BN和DM的值,然后分别在Rt△BDM和Rt△BCM中求出BM和CM的值,即可求出答案.
【详解】
如图所示:过点B作BN⊥AD,BM⊥DC垂足分别为N,M,
∵i=1:2.4,AB=26m,
∴设BN=x,则AN=2.4x,
∴AB==2.6x,
则2.6x=26,
解得:x=10,
故BN=DM=10m,
则tan30°= = = ,
解得:BM=10,
则tan35°== =0.7,
解得:CM≈11.9(m),
故DC=MC+DM=11.9+10=21.9(m).
故选B.
本题考查了解直角三角形的应用,如果没有直角三角形则作垂线构造直角三角形,然后利用直角三角形的边角关系来解决问题,有时还会用到勾股定理,相似三角形等知识才能解决问题.
5、C
【解析】
本题考查了一次函数的解析式,设为,把k和b代入即可.
【详解】
设函数解析式为:,
由题意得,k=0.2,b=28,
∴函数关系式为:.
故选:C.
本题考查了一次函数解析式的表示,熟练掌握一次函数解析式的表示方法是解题的关键.
6、A
【解析】
首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.
【详解】
依题意知a>0,>0,a+b﹣2=0,
故b>0,且b=2﹣a,
a﹣b=a﹣(2﹣a)=2a﹣2,
于是0<a<2,
∴﹣2<2a﹣2<2,
又a﹣b为整数,
∴2a﹣2=﹣1,0,1,
故a=,1,,
b=,1,,
∴ab=或1,故选A.
根据开口和对称轴可以得到b的范围.按照左同右异规则.当对称轴在y轴的左侧,则a,b符号相同,在右侧则a,b符号相反.
7、D
【解析】
各项分解因式,即可作出判断.
【详解】
A、原式=(x+y)2,不符合题意;
B、原式=(x+3)(x-3),不符合题意;
C、原式=(m+n)(m-n),不符合题意;
D、原式不能分解因式,符合题意,
故选D.
此题考查了因式分解-运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.
8、C
【解析】
根据题意得出a的取值范围,进而得出答案.
【详解】
解:∵点P(a,1)不在第一象限,
∴a≤0,
则﹣a≥0,
故点Q(0,﹣a)在:y轴正半轴上或原点.
故选:C.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,所以其中的是、、、的平均数,据此求解即可.
【详解】
解:,
是、、、的平均数,
故答案为:1.
此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
10、(只写一个即可)
【解析】
设方程为x2+kx+4=0,根据方程有两个相等的实数根可知∆=0,据此列式求解即可.
【详解】
设方程为x2+kx+4=0,由题意得
k2-16=0,
∴k=±4,
∴一次项为(只写一个即可).
故答案为:(只写一个即可).
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
11、1.
【解析】
试题分析:根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.
试题解析:∵1≤x≤5,
∴x-1≥2,x-5≤2.
故原式=(x-1)-(x-5)=x-1-x+5=1.
考点: 二次根式的性质与化简.
12、(1,0)
【解析】
试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标
试题解析:∵方程组的解为,
∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).
考点:一次函数与二元一次方程(组).
13、y=2x-6
【解析】
根据“左加右减,上加下减”的原则进行解答即可.
【详解】
解:函数y=2x-3的图像向下平移3个单位,所得新图像的函数表达式是y=2x-6.
故答案为y=2x-6.
本题主要考查一次函数图象的平移,解此题的关键在于熟记“左加右减,上加下减”.
三、解答题(本大题共5个小题,共48分)
14、750米.
【解析】
设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,根据题意可得,实际比原计划少用2天完成任务,据此列方程求解.
解:设实际每天修建盲道x米,则原计划每天修建盲道(x﹣25)米,
由题意得,﹣=2,
解得:x=750,
经检验,x=750是原分式方程的解,且符合题意.
答:实际每天修建盲道750米.
“点睛”本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
15、68°
【解析】
根据直角三角形的性质求出,然后根据平行线的性质可得,最后根据等边对等角和三角形的内角和定理即可求出的度数.
【详解】
解:∵
∴
∴
∵四边形是平行四边形
∴
∵
∴
此题考查的是平行四边形的性质、等腰三角形的性质和直角三角形的性质,掌握平行四边形的性质、等边对等角和直角三角形的两个锐角互余是解决此题的关键.
16、 (1)证明见解析;(2)证明见解析.
【解析】
(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;
(2)欲证明四边形BECD是矩形,只需推知BC=ED即可.
【详解】
(1)∵四边形是平行四边形,
∴,
∴.
又∵,
∴.
∴四边形为平行四边形.
∴.
∵在与中,,
∴.
(2)由(1)知,四边形为平行四边形,则.
∵四边形为平行四边形,
∴,即.
又∵,
∴,
∴,
∴,即,
∴四边形是矩形.
本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.
17、分式方程的解为x=1.1.
【解析】
根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.
【详解】
两边都乘以3(x﹣1),得:3x﹣3(x﹣1)=2x,
解得:x=1.1,
检验:x=1.1时,3(x﹣1)=1.1≠0,
所以分式方程的解为x=1.1.
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
18、(1);(2)或.
【解析】
(1))把代入即可求出a;
(2)分①时和②时根据函数值进行求解.
【详解】
解:(1)把代入得,解得;
(2)①时,y随x的增大而增大,
则当时,y有最大值2,把,代入函数关系式得,解得;
②时,y随x的增大而减小,
则当时,y有最大值2,把代入函数关系式得,解得,所以或.
此题主要考查一次函数的图像,解题的关键是根据题意分情况讨论.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或
【解析】
根据黄金矩形的定义,列出方程进行解题即可
【详解】
∵矩形ABCD是黄金矩形
∴或
∴得到方程或
解得AB=2或AB=
本题考查黄金分割比的应用,本题的关键在于能够读懂黄金矩形的定义,对两边的关系进行分情况讨论
20、
【解析】
如图作PE⊥AB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形,设AE=DF=a,EP=B G=b,BE=PG=c,PF=CG=d,则有a2+b2=9,c2+a2=16,c2+d2=25,可得2(a2+c2)+b2+d2=9+16+25推出b2+d2=18,即可解决问题.
【详解】
解:如图作PELAB于E,EP的延长线交CD于F,作PGLBC于G.则四边形AEFD是矩形,四边形EBGP是矩形,四边形PFCG是矩形.
设AE=DF=a,EP=BG=b,BE=PG=c,PF=CG=d,则有:a2+b2=9,c2+a2=16,c2+d2=25
∴2(a2+c2)+b2+d2=9+16+25
∴b2+d2=18
∴PD= ,故答案为 .
本题考查矩形的性质、勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.
21、k<1
【解析】
分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.
详解:∵一次函数y=kx+2(k≠1)的图象与x轴交于点A(n,1),
∴n=﹣,
∴当n>1时,﹣>1,
解得,k<1,
故答案为k<1.
点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
22、1
【解析】
首先求得正五边形围成的多边形的内角的度数,然后根据多边形的内角和定理即可求得答案.
【详解】
解:正五边形的内角度数是:=18°,
则正五边形围成的多边形的内角的度数是:360°−2×18°=144°,
根据题意得:180(n−2)=144n,
解得:n=1.
故答案为1.
本题考查了多边形的内角和定理,正确理解定理,求得围成的多边形的内角的度数是关键.
23、8 P1(0,-4),P2(-4,-4),P3(4,4)
【解析】
解:如图
∵△AOE的面积为4,函数y=的图象过一、三象限,
∴S△AOE=•OE•AE=4,
∴OE•AE=8,
∴xy=8,
∴k=8,
∵函数y=2x和函数y=的图象交于A、B两点,
∴2x=,
∴x=±2,
当x=2时,y=4,当x=-2时,y=-4,
∴A、B两点的坐标是:(2,4)(-2,-4),
∵以点B、O、E、P为顶点的平行四边形共有3个,
∴满足条件的P点有3个,分别为:
P1(0,-4),P2(-4,-4),P3(4,4).
故答案为:8;P1(0,-4),P2(-4,-4),P3(4,4).
本题考查反比例函数综合题.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)△ABC满足AB=BC时,四边形DBEA是矩形
【解析】
(1)根据EC=BD,EC∥BD即可证明;
(2)根据等腰三角形三线合一的性质得出∠BEA=90°,根据有一个角是直角的平行四边形是矩形推出即可.
【详解】
(1)∵E是AC中点,
∴AE=EC,
∵DB=AE,
∴EC=BD
又∵DB∥AC,
∴四边形DECB是平行四边形;
(2)△ABC满足AB=BC时,四边形DBEA是矩形,
理由如下:∵DB=AE,
又∵DB∥AC,
∴四边形DBEA是平行四边形(一组对边平行且相等的四边形是平行四边形),
∵AB=BC,E为AC中点,
∴∠AEB=90°,
∴平行四边形DBEA是矩形,
即△ABC满足AB=BC时,四边形DBEA是矩形.
本题考查了矩形的判定,平行四边形的判定与性质,等腰三角形三线合一的性质,题目难度不大,熟练掌握平行四边形的判定与性质以及平行四边形与矩形的联系是解题的关键.
25、(1)证明见详解;(2)45°;(3)BC+BE=2BG,理由见详解.
【解析】
(1)作FH⊥BC于H,由等腰三角形的性质得出∠ABD=∠CBD,BD⊥AC,由角平分线的性质得出EF=HF,∠BEF=90°=∠BHF,证明△BEF≌△BHF,得出BE=BH,证出△BCE是等腰直角三角形,得出∠BCE=45°,BE=EC=BH,证出△CFH是等腰直角三角形,得出CH=HF=EF,即可得出结论;
(2)由BD平分∠ABC,得到∠ABD的度数,然后求得∠BFE,由直角三角形斜边上的中线定理,可得DE=CD,可得∠DEF=∠DCF=22.5°,然后根据外角定理,即可求得∠BDE;
(3)由(2)知,∠ADE=∠ABC=45°,由等腰三角形的性质得出∠A=∠ACB=67.5°,由三角形内角和定理得出∠AED=180°-∠A-∠ADE=67.5°,得出∠AED=∠A,证出DA=DE,由等腰三角形的性质得出AG=EG,即可得出结论.
【详解】
(1)证明:作FH⊥BC于H,如图所示:
则∠BHF=90°,
∵AB=BC,BD是AC边上的高,
∴∠ABD=∠CBD,BD⊥AC,
∵CE是AB边上的高,
∴CE⊥AB,
∴EF=HF,∠BEF=90°=∠BHF,
在△BEF和△BHF中,
∴△BEF≌△BHF(AAS),
∴BE=BH,
∵∠ABC=45°,
∴△BCE是等腰直角三角形,
∴∠BCE=45°,BE=EC=BH,
∴△CFH是等腰直角三角形,
∴CH=HF=EF,
∴EC+EF=BH+CH=BC;
(2)解:如图,
由(1)知,BD平分∠ABC,∠ABC=45°,
∴∠ABF=22.5°,
∴∠BFE=90°-22.5°=67.5°,
∵AB=BC,∠ABC=45°,
∴∠A=,
在直角三角形ACE中,D是AC中点,
∴DE=CD=AD,
∴∠DEF=∠DCF=90°-67.5°=22.5°,
∴∠BDE=∠BFE-∠DEF=67.5°-22.5°=45°;
(3)解:BC+BE=2BG,理由如下:如图,
由(2)得:∠DEF=∠DCF=22.5°
∴∠ADE=∠ABC=45°,
∵AB=BC,∠ABC=45°,
∴∠A=∠ACB=67.5°,
∴∠AED=180°-∠A-∠ADE=67.5°,
∴∠AED=∠A,
∴DA=DE,
∵DG⊥AE,
∴AG=EG,
∵BC=AB=BE+AE=BE+2EG=BG+EG,EG=BG-BE,
∴BC=BG+BG-BE,
∴BC+BE=2BG.
本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质与判定、等腰直角三角形的判定与性质、角平分线的性质、直角三角形斜边上的中线等;本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等和等腰直角三角形是解题的关键.
26、(1)两边上的高相等的三角形是等腰三角形;(2)是,证明见解析.
【解析】
(1)根据逆命题的定义即可写出结论;
(2)根据题意,写出已知和求证,然后利用HL证出Rt△BCD≌Rt△CBE,从而得出∠ABC=∠ACB,然后根据等角对等边即可证出结论.
【详解】
(1)等腰三角形两腰上的高相等的逆命题是两边上的高相等的三角形是等腰三角形,
故答案为:两边上的高相等的三角形是等腰三角形;
(2)如图,已知CD和BE是AB和AC边上的高,CD=BE,
求证:AB=AC;
证明:如图,在△ABC中,BE⊥AC,CD⊥AB,且BE=CD.
∵BE⊥AC,CD⊥AB,
∴∠CDB=∠BEC=90°,
在Rt△BCD与Rt△CBE中,
,
∴Rt△BCD≌Rt△CBE(HL),
∴∠ABC=∠ACB,
∴AB=AC,即△ABC是等腰三角形.
此题考查的是写一个命题的逆命题、全等三角形的判定及性质和等腰三角形的性质,掌握逆命题的定义、全等三角形的判定及性质和等角对等边是解决此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年吉林省长春市第72中学九年级数学第一学期开学经典试题【含答案】: 这是一份2024-2025学年吉林省长春市第72中学九年级数学第一学期开学经典试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年吉林省长春市绿园区九年级中考二模数学试题: 这是一份2024年吉林省长春市绿园区九年级中考二模数学试题,共2页。
2024年吉林省长春市绿园区九年级中考二模数学试题: 这是一份2024年吉林省长春市绿园区九年级中考二模数学试题,共2页。