终身会员
搜索
    上传资料 赚现金

    吉林省第二实验学校2024-2025学年数学九年级第一学期开学综合测试试题【含答案】

    立即下载
    加入资料篮
    吉林省第二实验学校2024-2025学年数学九年级第一学期开学综合测试试题【含答案】第1页
    吉林省第二实验学校2024-2025学年数学九年级第一学期开学综合测试试题【含答案】第2页
    吉林省第二实验学校2024-2025学年数学九年级第一学期开学综合测试试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省第二实验学校2024-2025学年数学九年级第一学期开学综合测试试题【含答案】

    展开

    这是一份吉林省第二实验学校2024-2025学年数学九年级第一学期开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知四边形ABCD中,AB∥CD,对角线AC与BD交于点O,下列条件中不能用作判定该四边形是平行四边形条件的是( )
    A.AB=CDB.AC=BDC.AD∥BCD.OA=OC
    2、(4分)关于的方程有实数根,则满足( )
    A.B.且C.且D.
    3、(4分)点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是( )
    A.B.
    C.D.
    4、(4分)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是 ( )
    A.289(1―2x)=256
    B.256(1+x)2=289
    C.289(1―x)2=256
    D.289―289(1―x)―289(1―x)2=256
    5、(4分)下列图形中是中心对称图形,但不是轴对称图形的是( )
    A.B.C.D.
    6、(4分)在一组数据3,4,4,6,8中,下列说法错误的是( )
    A.它的众数是4B.它的平均数是5
    C.它的中位数是5D.它的众数等于中位数
    7、(4分)下列长度的三条线段,能成为一个直角三角形的三边的一组是( )
    A.B.1,2,C.2,4,D.9,16,25
    8、(4分)小颖现已存款200元,为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y(元)与时间x(月)之间的函数关系式是( )
    A.y=10xB.y=120xC.y=200-10xD.y=200+10x
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则的度数等于___________.
    10、(4分)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:______,使四边形ABCD为平行四边形(不添加任何辅助线).
    11、(4分)如图,ABCD的对角线AC,BD交于点O,M是CD的中点,连接OM,若OM=2,则BC的长是______________.
    12、(4分)如图,已知,点是等腰斜边上的一动点,以为一边向右下方作正方形,当动点由点运动到点时,则动点运动的路径长为______.
    13、(4分)方程的根是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解一元二次方程:.
    15、(8分)已知:,,求的值.
    16、(8分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
    (1)求证△ACD≌△BFD
    (2)求证:BF=2AE;
    (3)若CD=,求AD的长.
    17、(10分)如图,在中,对角线BD平分,过点A作,交CD的延长线于点E,过点E作,交BC延长线于点F.
    (1)求证:四边形ABCD是菱形;
    (2)若求EF的长.
    18、(10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
    (1)求证:△ADE≌△ABF;
    (2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
    (3)若BC=8,DE=6,求△AEF的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一个矩形的长比宽多1cm,面积是132cm2,则矩形的长为________cm.
    20、(4分)某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.
    21、(4分)若是一个完全平方式,则______.
    22、(4分)如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是__________.
    23、(4分)将50个数据分成5组,第1、2、3、4组的频数分别是2、8、10、15,则第5组的频率为_________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平面宜角坐标系xOy中,直线y=x+4与x轴,y轴交于点A,B.第一象限内有一点P(m,n),正实数m,n满足4m+3n=12
    (1)连接AP,PO,△APO的面积能否达到7个平方单位?为什么?
    (2)射线AP平分∠BAO时,求代数式5m+n的值;
    (3)若点A′与点A关于y轴对称,点C在x轴上,且2∠CBO+∠PA′O=90°,小慧演算后发现△ACP的面积不可能达到7个平方单位.请分析并评价“小薏发现”.
    25、(10分)如图,在△ABC中,∠C=90∘,AC=BC,AD平分∠CAB,DE⊥AB,垂足为E.
    (1)求证:CD=BE;
    (2)若AB=10,求BD的长度.
    26、(12分)正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.
    (1)求正比例函数和一次函数的表达式;
    (2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;
    (3)求出的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    A. AB=CD,一组对边平行且相等的四边形是平行四边形;
    B. AC=BD,一组对边平行,另一组对边相等的四边形不一定是平行四边形,也可能是等腰梯形;
    C. AD∥BC,两组对边分别平行的四边形是平行四边形;
    D. OA=OC,通过证明两个三角形全等,得出AB=CD,可以得出平行四边形.故选B.
    2、A
    【解析】
    分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.
    【详解】
    当a=5时,原方程变形为-4x-1=0,解得x=-;
    当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,
    所以a的取值范围为a≥1.
    故选A.
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
    3、C
    【解析】
    由第二象限纵坐标大于零得出关于m的不等式,解之可得.
    【详解】
    解:由题意知m+1>0,
    解得m>﹣1,
    故选:C.
    本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
    4、C
    【解析】
    试题分析:两次降价后的商品的售价=降价前的商品的售价×(1-平均每次降价的百分率)2.
    由题意可列方程为.选:C.
    考点:根据实际问题列方程
    5、D
    【解析】
    将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.
    【详解】
    A、是轴对称图形,是中心对称图形;
    B、是轴对称图形,是中心对称图形;
    C、是轴对称图形,不是中心对称图形;
    D、不是轴对称图形,是中心对称图形,
    故选:D.
    此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.
    6、C
    【解析】
    一组数据中出现次数最多的数为众数;
    将这组数据从小到大的顺序排列,处于中间位置的一个数或两个数的平均数是中位数.
    根据平均数的定义求解.
    【详解】
    在这一组数据中4是出现次数最多的,故众数是4;
    将这组数据已经从小到大的顺序排列,处于中间位置的那个数是4,那么由中位数的定义可知,这组数据的中位数是4;
    由平均数的公式的,=(3+4+4+6+8)÷5=5,平均数为5,
    故选C.
    本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    7、B
    【解析】
    由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    A、∵()2+()2≠()2,∴不能构成直角三角形,故本选项错误;
    B、∵12+()2=22,∴能构成直角三角形,故本选项正确;
    C、∵22+()2≠42,∴不能构成直角三角形,故本选项错误;
    D、∵92+162≠252,∴不能构成直角三角形,故本选项错误.
    故选B.
    本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
    8、D
    【解析】
    根据题意可以写出存款总金额y(元)与时间x(月)之间的函数关系式,从而可以解答本题.
    【详解】
    解:由题意可得,
    y=200+10x,
    故选:D.
    本题考查函数关系式,解答本题的关键是明确题意,写出函数关系式.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、30°
    【解析】
    根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.
    【详解】
    ∵CC′∥AB,
    ∴∠ACC′=∠CAB=75°,
    ∵△ABC绕点A旋转得到△AB′C′,
    ∴AC=AC′,
    ∴∠CAC′=180°-2∠ACC′=180°-2×75°=30°,
    ∴∠CAC′=∠BAB′=30°.
    故答案为:30°.
    本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.
    10、AD=BC.
    【解析】
    直接利用平行四边形的判定方法直接得出答案.
    【详解】
    当AD∥BC,AD=BC时,四边形ABCD为平行四边形.
    故答案是AD=BC(答案不唯一).
    11、1
    【解析】
    证明是的中位线即可求解.
    【详解】
    解:四边形是平行四边形,

    是中点,

    ∴是的中位线,

    故答案为:1.
    本题考查平行四边形的性质、三角形中位线定理等知识,解题的关键是根据平行四边形性质判断出是的中位线.
    12、
    【解析】
    连接,根据题意先证出,然后得出,所以点运动的路径长度即为点从到的运动路径,继而得出结论
    【详解】
    连接,
    ∵,是等腰直角三角形,
    ∴,∠ABC=90°
    ∵四边形是正方形
    ∴BD=BF,∠DBF=∠ABC=90°,
    ∴∠ABD=∠CBF,
    在△DAP与△BAP中
    ∴,
    ∴,
    点运动的路径长度即为点从到的运动路径,为.
    故答案为:
    本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.
    13、
    【解析】
    对原方程移项化简,即可求出x,然后再检验即可.
    【详解】
    解:
    x=2,
    经检验x=2是分式方程的解.
    本题考查了解分式方程,熟练掌握解方程的方法是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、,
    【解析】
    【分析】用公式法求一元二次方程的解.
    【详解】
    解:,,.
    >1.
    ∴.
    ∴原方程的解为,
    【点睛】本题考核知识点:解一元二次方程.解题关键点:熟记一元二次方程的求根公式.
    15、3
    【解析】
    直接将代入求值比较麻烦,因此,可将原式化为含有的式子,再计算出 的值代入即可.
    【详解】
    解:∵,,∴,.
    ∴原式.
    本题考查了乘法公式,灵活应用乘法公式将整式变形是解题的关键.
    16、(1)见解析;(1)见解析;(3)AD =1+
    【解析】
    (1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等;
    (1)根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AE,从而得证;
    (3)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.
    【详解】
    (1)∵AD⊥BC,∠BAD=45°,
    ∴△ABD是等腰直角三角形,∴AD=BD,
    ∵BE⊥AC,AD⊥BC,
    ∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,
    ∴∠CAD=∠CBE,
    在△ADC和△BDF中,
    ∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,
    ∴△ACD≌△BFD(ASA)
    (1)由(1)可知:BF=AC
    ∵AB=BC,BE⊥AC,
    ∴AC=1AE,
    ∴BF=1AE;
    (3) ∵△ACD≌△BFD,
    ∴DF=CD=,
    在Rt△CDF中,CF=,
    ∵BE⊥AC,AE=EC,
    ∴AF=CF=1.
    ∴AD=AF+DF=1+
    本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.
    17、 (1)见解析;(2)
    【解析】
    (1)证明,得出,即可得出结论;
    (2)由菱形的性质得出,证明四边形ABDE是平行四边形,,得出,在中,由等腰直角三角形的性质和勾股定理即可求出EF的长.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,

    ∵BD平分,



    是菱形;
    (2)解:∵四边形ABCD是菱形,


    ∴四边形ABDE是平行四边形,,



    是等腰直角三角形,

    本题考查了平行四边形的性质与判定、菱形的判定与性质、等腰三角形的判定以及等腰直角三角形的判定与性质;熟练掌握菱形判定与性质是解决问题的关键.
    18、解:(1)见解析
    (2)A;90;
    (3)50
    【解析】
    试题分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF.
    (2)∵△ADE≌△ABF,∴∠BAF=∠DAE.
    而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°.
    ∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到.
    (3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
    【详解】
    解:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°.
    又∵点F是CB延长线上的点,∴∠ABF=90°.
    在△ADE和△ABF中,∵,
    ∴△ADE≌△ABF(SAS).
    (2)A;90.
    (3)∵BC=8,∴AD=8.
    在Rt△ADE中,DE=6,AD=8,∴.
    ∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,
    ∴AE=AF,∠EAF=90°.
    ∴△AEF的面积=AE2=×100=50(平方单位).
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    设矩形的宽为xcm,根据矩形的面积=长×宽列出方程解答即可.
    【详解】
    设矩形的宽为xcm,依题意得:
    x(x+1)=132,
    整理,得(x+1)(x-11)=0,
    解得x1=-1(舍去),x2=11,
    则x+1=1.
    即矩形的长是1cm.
    故答案为:1.
    本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
    20、90
    【解析】
    试题分析:设物理得x分,则95×60%+40%x=93,截得:x=90.
    考点:加权平均数的运用
    21、
    【解析】
    根据完全平方公式的结构特征进行判断即可确定出m的值.
    【详解】
    ∵x2+2mx+1是一个完全平方式,
    ∴m=±1,
    故答案为:±1.
    本题考查了完全平方式,熟练掌握完全平方式的结构特征是解题的关键. 本题易错点在于:是加上或减去两数乘积的2倍,在此有正负两种情况,要全面分析,避免漏解.
    22、﹣3
    【解析】
    令时,解得,故与轴的交点为.由函数图象可得,当时,函数的图象在轴上方,且其函数图象在函数图象的下方,故解集是,所以关于的不等式的整数解为.
    23、0.3
    【解析】
    根据所有数据的频数和为总数量,可用减法求解第五组的评数,用频数除以总数即可.
    【详解】
    解:∵第1、2、3、4组的频数分别是2、8、10、15,
    ∴50-2-8-10-15=15
    ∴15÷50=0.3
    故答案为0.3.
    此题主要考查了频率的求法,明确用频数除以总数求取频率是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)不能;(2)2;(3)见解析.
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点A的坐标,由△APO的面积等于7个平方单位可求出n值,代入4m+3n=12中可求出m值为负,由此可得出△APO的面积不能达到7个平方单位;
    (2)设AP与y轴交于点E,过点E作EF⊥AB于点F,利用面积法及角平分线的性质可求出点E的坐标,由点A,E的坐标,利用待定系数法可求出直线AP的解析式,由m,n满足4m+3n=12可得出直线BP的解析式,联立直线AP,BP的解析式成方程组,通过解方程组可求出m,n的值,再将其代入1m+n中即可得出结论;
    (3)当点C在x轴正半轴时,由2∠CBO+∠PA′O=20°可得出BC平分∠OBA′,同(2)可求出C的坐标,进而可求出AC的长,利用三角形的面积公式可求出△ACB的面积,由该值大于7可得出:存在点P,使得△ACP的面积等于7个平方单位;当点C在x轴正半轴时,利用对称可得出点C的坐标,进而可求出AC的长,利用三角形的面积公式可求出△ACB的面积,由该值小于7可得出:此种情况下,△ACP的面积不可能达到7个平方单位.综上,此题得解.
    【详解】
    (1)△APO的面积不能达到7个平方单位,理由如下:
    当y=0时,x+4=0,解得:x=-3,
    ∴点A的坐标为(-3,0).
    ∴S△APO=OA•n=7,即n=7,
    ∴n=.
    又∵4m+3n=12,
    ∴m=-2,这与m为正实数矛盾,
    ∴△APO的面积不能达到7个平方单位.如图1,
    (2)设AP与y轴交于点E,过点E作EF⊥AB于点F,如图2所示.
    当x=0时,y=x+4=4,
    ∴点B的坐标为(0,4),
    ∴AB==1.
    ∵AP平分∠BAO,
    ∴EO=EF.
    ∵S△ABE=BE•OA=AB•EF,S△AOE=EO•OA,
    ∴,即,
    ∴EO=,
    ∴点E的坐标为(0,).
    设直线AP的解析式为y=kx+b(k≠0),
    将A(-3,0),E(0,)代入y=kx+b,得:
    ,解得:,
    ∴直线AP的解析式为y=x+.
    ∵点P的坐标为(m,n),m,n满足4m+3n=12,
    ∴点P在直线y=-x+4上.
    联立直线AP,BP的解析式成方程组,得:

    解得:,
    ∴m=,n=,
    ∴1m+n=2.
    (3)“小薏发现”不对,理由如下:
    依照题意,画出图形,如图3所示.
    ∵2∠CBO+∠PA′O=20°,∠OBA′+∠PA′O=20°,
    ∴∠OBA′=2∠CBO.
    ∵点A′与点A关于y轴对称,
    ∴点A′的坐标为(3,0),点P在线段BA′上.
    当点C在x轴正半轴时,BC平分∠OBA′,
    同(2)可得出:,即,
    ∴OC=,
    ∴点C的坐标为(,0),
    ∴AC=.
    ∵S△ACB=AC•OB=××4=>7,
    ∴不存在点P,使得△ACP的面积等于7个平方单位;
    当点C在x轴负半轴时,点C的坐标为(-,0),
    ∴AC=.
    ∵S△ACB=AC•OB=××4=<7,
    ∴此种情况下,△ACP的面积不可能达到7个平方单位.
    综上所述:“小薏发现”不正确.
    本题考查了一次函数图象上点的坐标特征、三角形的面积、待定系数法求一次函数解析式、三角形的面积、角平分线的性质以及角的计算,解题的关键是:(1)利用三角形的面积公式结合△APO的面积等于7个平方单位,求出n值;(2)联立两直线解析式成方程组,通过解方程组求出交点坐标;(3)分点C在x轴正半轴及点C在x轴负半轴两种情况,分析“小薏发现”是否正确.
    25、(1)详见解析;(2)BD=.
    【解析】
    (1)等腰直角三角形的底角为45°,角平分线上的点到两边的距离相等,根据这些知识用线段的等量代换可求解.
    (2)先求出BC的长度,再设BD=x,可表示出CD,从而可列方程求解.
    【详解】
    (1)证明:∵AD平分∠CAB,C=90∘,DE⊥AB
    ∴DC⊥AC,
    ∴CD=DE
    ∵AC=BC
    ∴∠B=45°
    ∴∠B=∠BDE
    ∴DE=BE
    ∴CD=BE;
    (2)解:在△ABC中,
    ∵∠C=90°,AC=BC,AB=10
    ∴BC=5
    在Rt△BDE中,设BD=x,
    ∵DE=BE=CD
    ∴BE=CD=x,
    列方程为:x+x=5
    解得BD=x=10−10.
    本题考查角平分线的性质,等腰三角形的性质,勾股定理等知识点.以及数形结合的思想.
    26、(1);;(2)图详见解析;(3)3
    【解析】
    (1)把代入即可求得的值,求得正比例函数的解析式;把,代入,利用待定系数法,即可求得一次函数的解析式;
    (2)根据题意描出相应的点,再连线即可;
    (3)由A、B、O三点坐标,根据三角形的面积公式即可求解.
    【详解】
    解:(1)把A(1,2)代入中,得,
    ∴正比例函数的表达式为;
    把A(1,2),B(3,0)代入中,得

    解得:,
    所以一次函数的表达式为;
    (2)如图所示.
    (3)由题意可得:.
    本题考查了待定系数法求函数解析式,以及直线与坐标轴围成的三角形的面积的计算,理解线段的长度可以通过点的坐标表示,培养数形结合思想是关键.
    题号





    总分
    得分

    相关试卷

    2024-2025学年江苏无锡市锡中学实验学校九年级数学第一学期开学综合测试试题【含答案】:

    这是一份2024-2025学年江苏无锡市锡中学实验学校九年级数学第一学期开学综合测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年吉林省长春市第二实验学校九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份2024-2025学年吉林省长春市第二实验学校九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年吉林省延边州敦化市数学九年级第一学期开学综合测试试题【含答案】:

    这是一份2024-2025学年吉林省延边州敦化市数学九年级第一学期开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map