


吉林省吉林市第12中学2025届九上数学开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
A.1,2,3B.4,6,8C.6,8,10D.13,14,15
2、(4分)如图,在平面直角坐标系中,点B在x轴上,△AOB是等腰三角形,AB=AO=5,BO=6,则点A的坐标为( )
A.(3,4)B.(4,3)C.(3,5)D.(5,3)
3、(4分)如图,y1,y2分别表示燃油汽车和纯电动汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知纯电动汽车每千米所需的费用比燃油汽车每千米所需费用少0.54元,设纯电动汽车每千米所需费用为x元,可列方程为( )
A.B.
C.D.
4、(4分)如图,在正方形中,点是的中点,点是的中点,与相交于点,设.得到以下结论:
①;②;③则上述结论正确的是( )
A.①②B.①③
C.②③D.①②③
5、(4分)下列图形是中心对称图形,但不是轴对称图形的是( )
A.B.C.D.
6、(4分)已知,下列不等式中错误的是( )
A.B.C.D.
7、(4分)若代数式在实数范围内有意义,则实数的取值范围是( )
A.B.C.D.
8、(4分)若五箱苹果的质量(单位:)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是( )
A.18和18B.19和18C.20和18D.20和19
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.
10、(4分)如图,菱形ABCD的两条对角线长分别为6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点则PM+PN的最小值是_
11、(4分)不等式2x≥-4的解集是 .
12、(4分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办了“玩转数学”比赛.评委从研究报告、小组展示、答辩三个方面为每个参赛小组打分,按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,各项成绩均按百分制记录.甲小组的研究报告得85分,小组展示得90分,答辩得80分,则甲小组的参赛成绩为_____.
13、(4分)不等式组的解集为x>2,则a的取值范围是_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.
学校若干名学生成绩分布统计表
(1)此次抽样调查的样本容量是 ;
(2)写出表中的a= ,b= ,c= ;
(3)补全学生成绩分布直方图;
(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?
15、(8分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
(l)当点C与点O重合时,DE= ;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
16、(8分)如图,在平面直角坐标系中,直线y1=x+1与双曲线(k>0)相交于点A、B,已知点A坐标(2,m).
(1)求k的值;
(2)求点B的坐标,并观察图象,写出当时,x的取值范围.
17、(10分)解不等式组:,并写出它的所有整数解.
18、(10分)如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F. ①求△COF的面积;
②在x轴上是否存在点P,使S△OCP=S△COF?若存在,求出点P的坐标;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)设、是方程的两个实数根,则的值为_____.
20、(4分)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是_______.
21、(4分)如图,等腰直角三角形ABC的直角边AB的长为,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点D,则图中阴影△ADC′的面积等于______.
22、(4分)方程的解为_____.
23、(4分)直线y1=k1x+b1(k1>0)与y2=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴围成的三角形面积为4,那么b1-b2等于________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某学校需要置换一批推拉式黑板,经了解,现有甲、乙两厂家报价均为100元/米1,且提供的售后服务完全相同,为了促销,甲厂家表示,每平方米都按七折计费;乙厂家表示,如果黑板总面积不超过10米1,每平方米都按九折计费,超过10米1,那么超出部分每平方米按六折计费.假设学校需要置换的黑板总面积为x米1.
(1)请分别写出甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;
(1)请你结合函数图象的知识帮助学校在甲、乙两厂家中,选择一家收取总费用较少的.
25、(10分)如图1,在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(n,1)(n>0),将此矩形绕O点逆时针旋转90°得到矩形OA′B′C′,抛物线y=ax2+bx+c(a≠0)经过A、A′、C′三点.
(1)求此抛物线的解析式(a、b、c可用含n的式子表示);
(2)若抛物线对称轴是x=1的一条直线,直线y=kx+2(k≠0)与抛物线相交于两点D(x1,y1)、E(x2、y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点D和E的坐标;
(3)若抛物线对称轴是x=1的一条直线,如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接MQ′、PQ′,当△PMQ′与平行四边形APQM重合部分的面积是平行四边形的面积的时,求平行四边形APQM的面积.
26、(12分)小米手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A款手机每部售价多少元?
(2)该店计划新进一批A款手机和B款手机共60部,且B款手机的进货数量不超过A款手机数量的两倍,应如何进货才能使这批手机获利最多?A,B两款手机的进货和销售价格如下表:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、12+22=5≠32,故不能组成直角三角形,错误;
B、42+62≠82,故不能组成直角三角形,错误;
C、62+82=102,故能组成直角三角形,正确;
D、132+142≠152,故不能组成直角三角形,错误.
故选:C.
考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
2、A
【解析】
先过点A作AC⊥OB,根据△AOB是等腰三角形,求出OA=AB,OC=BC,再根据点B的坐标,求出OC的长,再根据勾股定理求出AC的值,从而得出点A的坐标.
【详解】
过点A作AC⊥OB,
∵△AOB是等腰三角形,
∴OA=AB,OC=BC,
∵AB=AO=5,BO=6,
∴OC=3,
∴AC=,
∴点A的坐标是(3,4).
故选:A.
此题考查了等腰三角形的性质,勾股定理,关键是作出辅助线,求出点A的坐标.
3、C
【解析】
设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,根据路程=总费用÷每千米所需费用结合路程相等,即可得出关于x的分式方程,此题得解.
【详解】
解:设纯电动汽车每千米所需费用为x元,则燃油汽车每千米所需费用为(x+0.54)元,
根据题意得:.
故选:C.
本题考查了由实际问题抽象出分式方程以及函数的图象,找准等量关系,正确列出分式方程是解题的关键.
4、D
【解析】
由正方形的性质和全等三角形的判定与性质,直角三角形的性质进行推理即可得出结论.
【详解】
解:如图,
(1)
所以①成立
(2)如图延长交延长线于点,
则:
∴为直角三角形斜边上的中线,是斜边的一半,即
所以②成立
(3) ∵
∴
∵
∴
所以③成立
故选:D
本题考查的正方形的性质,直角三角形的性质以及全等三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
5、C
【解析】
根据中心对称图形与轴对称图形的定义即可判断.
【详解】
A.角是轴对称图形,不是中心对称图形,故错误;
B不一定是轴对称图形,不是中心对称图形,故错误;
C是中心对称图形,不是轴对称图形,故正确;
D是轴对称图形,不是中心对称图形,故错误;
故选C.
此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知中心对称图形与轴对称图形的性质.
6、D
【解析】
不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.
【详解】
解:∵a<b,
∴3a<3b,A选项正确;
a+5<b+5,B选项正确;
a-5<b-5,C选项正确;
-3a>-3b,D选项错误;
故选:D.
本题主要考查不等式的性质,主要考查不等式的性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
7、B
【解析】
直接利用分式有意义的条件进而得出答案.
【详解】
∵代数式在实数范围内有意义,
∴a-1≠0,
∴a≠1.
故选B.
此题主要考查了分式有意义的条件,正确把握定义是解题关键.
8、B
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
【详解】
把这组数据从小到大排列为:18、18、19、20、21,数据18出现了两次最多,所以18为众数;19处在第3位是中位数.所以本题这组数据的中位数是19,众数是18.
故选:B.
本题考查众数,中位数,在做题时需注意①众数是出现次数最多的数,这样的数可能有几个;②在找中位数时需先给数列进行排序,如果数列的个数是奇数个,那么中位数为中间那个数,如果数列的个数是偶数个,那么中位数为中间两个数的平均数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.
【详解】
解:解方程得第三边的边长为2或1.
第三边的边长,
第三边的边长为1,
这个三角形的周长是.
故答案为2.
本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.
10、1
【解析】
试题分析:要求PM+PN的最小值,PM,PN不能直接求,可考虑通过作辅助线转化PN,PM的值,从而找出其最小值求解.如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,而由已知可得AB=1∴AE=BN,∵四边形ABCD是菱形,∴AE∥BN,∴四边形AENB为平行四边形,∴EN=AB=1,∴PM+PN的最小值为1.
考点:轴对称—最短路径问题
点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.综合运用这些知识是解决本题的关键
11、x≥-1
【解析】
分析:已知不等式左右两边同时除以1后,即可求出解集.
解答:
解:1x≥-4,
两边同时除以1得:x≥-1.
故答案为x≥-1.
12、85分
【解析】
根据加权平均数的定义计算可得.
【详解】
根据题意知,甲小组的参赛成绩为85×40%+90×30%+80×30%=85(分),
故答案为:85分.
本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.
13、a≤2
【解析】
根据求一元一次不等式组解集的口诀,即可得到关于a的不等式,解出即可.
【详解】
由题意得a≤2.
本题考查的是解一元一次不等式组,解答本题的关键是熟练掌握求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,小小大大找不到(无解).
三、解答题(本大题共5个小题,共48分)
14、(1)200;(2)62,0.06,38;(3)a=62,c=38,图见解析;(4)1.
【解析】
(1)根据50≤x<60的人数及占比即可求出此次抽样调查的样本容量;
(2)根据抽样调查的样本容量即可求出a,b,c的值;
(3)根据所求即可补全统计图;
(4)求出1≤x<90和90≤x≤100的频率和为0.25,即可得到一等奖的分数线.
【详解】
解:(1)16÷0.08=200,
故答案为:200;
(2)a=200×0.31=62,
b=12÷200=0.06,
c=200﹣16﹣62﹣72﹣12=38,
故答案为:62,0.06,38;
(3)由(2)知a=62,c=38,
补全的条形统计图如右图所示;
(4)d=38÷200=0.19,
∵b=0.06,
0.06+0.19=0.25=25%,
∴一等奖的分数线是1.
此题主要考查统计调查,解题的关键是根据题意求出抽样调查的样本容量.
15、(1)1;(1)证明见解析;(3)≤OD≤1.
【解析】
(1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;
(1)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
(3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.
【详解】
解:∵直线AB的解析式为y=﹣1x+4,
∴点A的坐标为(1,0),点B的坐标为(0,4),即可得OB=4,OA=1,
(1)当点C与点O重合时如图所示,
∵DE垂直平分BC(BO),
∴DE是△BOA的中位线,
∴DE=OA=1;
故答案为:1;
(1)当CE∥OB时,如图所示:
∵DE为BC的中垂线,
∴BD=CD,EB=EC,
∴∠DBC=∠DCB,∠EBC=∠ECB,
∴∠DCE=∠DBE,
∵CE∥OB,
∴∠CEA=∠DBE,
∴∠CEA=∠DCE,
∴BE∥DC,
∴四边形BDCE为平行四边形,
又∵BD=CD,
∴四边形BDCE为菱形.
(3)当点C与点O重合时,OD取得最大值,此时OD=OB=1;
当点C与点A重合时,OD取得最小值,如图所示:
在Rt△AOB中,AB==1,
∵DE垂直平分BC(BA),
∴BE=BA=,
易证△BDE∽△BAO,
∴,即,
解得:BD=,
则OD=OB﹣BD=4﹣=.
综上可得:≤OD≤1.
本题考查一次函数综合题.
16、(1)k=6;(2)当x<﹣3或0<x<2时,;
【解析】
分析:(1)设A(2,m),将A纵坐标代入一次函数解析式求出m的值,确定出A坐标,代入反比例解析式求出k的值,即可确定出反比例解析式;
(2)联立两函数解析式求出B的坐标,由A与B横坐标,利用图象即可求出当时,自变量x的取值范围.
详解:(1)∵A(2,m),
将A(2,m)代入直线y=x+1得:m=3,即A(2,3)
将A(2,3)代入关系式 y= 得:k=6;
(2)联立直线与反比例解析式得:,
消去y得: x+1=,
解得: x=2或x=﹣3,
将x=﹣3代入y=x+1, 得:y=﹣3+1=﹣2,即B(﹣3,﹣2),
则当x<﹣3或0<x<2时,.
点睛:本题考查了反比例函数与一次函数的交点问题,利用数形结合的思想,熟练掌握数形结合思想是解本题的关键.
17、解集为-4<x<2,不等式组的整数解是:﹣3,﹣2,﹣1、1.
【解析】
分别解出两个不等式,然后得到公共解集,再找出整数解即可
【详解】
,
∵解不等式①得:x>﹣4,
解不等式②得:x<1,
∴原不等式组的解集为:﹣4<x<2,
∴不等式组的整数解是:﹣3,﹣2,﹣1、1.
本题主要考查求不等式组的整数解,关键在于解出不等式组的解
18、(1)E(8,0);
(2)y=﹣x+6
(3)①54;②点P的坐标为(6,0)或(﹣6,0).
【解析】
(1)根据折叠的性质知CE=CB=1.在在直角△COE中,由勾股定理求得OE=8;
(2)根据OC=6知C(0,6),由折叠的性质与勾股定理,求得D(1,),利用待定系数法求CD所在直线的解析式;
(3)①根据F(18,0),即可求得△COF的面积;②设P(x,0),依S△OCP=S△CDE得×OP×OC=×54,即×|x|×6=18,求得x的值,即可得出点P的坐标.
【详解】
(1)如图,
∵四边形ABCD是长方形,
∴BC=OA=1,∠COA=90°,
由折叠的性质知,CE=CB=1,
∵OC=6,
∴在直角△COE中,由勾股定理得OE==8,
∴E(8,0);
(2)设CD所在直线的解析式为y=kx+b(k≠0),
∵C(0,6),
∴b=6,
设BD=DE=x,
∴AD=6-x,AE=OA-OE=2,
由勾股定理得AD2+AE2=DE2
即(6-x)2+22=x2,
解得x=,
∴AD=6-=,
∴D(1,),
代入y=kx+6 得,k=-,
故CD所在直线的解析式为:y=-x+6;
(3)①在y=-x+6中,令y=0,则x=18,
∴F(18,0),
∴△COF的面积=×OF×OC=×18×6=54;
②在x轴上存在点P,使得S△OCP=S△COF,
设P(x,0),依题意得
×OP×OC=×54,即×|x|×6=18,
解得x=±6,
∴在x轴上存在点P,使得S△OCP=S△COF,点P的坐标为(6,0)或(-6,0).
本题属于四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理以及待定系数法求一次函数的解析式的综合应用.解答此题时注意坐标与图形的性质的运用以及方程思想的运用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
根据根与系数的关系可得出,,将其代入中即可得出结论.
【详解】
∵、是方程的两个实数根,
∴,,
∴.
故答案为:-1.
本题考查了根与系数的关系,牢记“两根之和等于,两根之积等于”是解题的关键.
20、(2,2).
【解析】
解:过点B作DE⊥OE于E,
∵矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,
∴∠CAO=30°.
又∵OC=2,∴AC=1.∴OB=AC=1.
又∵∠OBC=∠CAO=30°,DE⊥OE,∠CBA=90°,∴∠OBE=30°.
∴OE=2,BE=OB·cs∠OBE=2.
∴点B的坐标是(2,2).
故答案为:(2,2).
21、
【解析】
由旋转的性质可得AB=AB'=,∠BAB'=15°,可得∠B'AD=∠BAC-∠B'AB=30°,由直角三角形的性质可得B'D=1,由三角形面积公式可求解.
【详解】
解:∵AB=BC,∠ABC=90°,
∴∠BAC=45°,
∵△ABC绕点A逆时针旋转15°后得到△AB′C′,
∴AB=AB'=,∠BAB'=15°,
∴∠B'AD=∠BAC-∠B'AB=30°,且∠B'=90°,
∵tan∠B'AD=,
∴AB'=B'D,
∴B'D=1,
∴阴影△ADC'的面积=,
故答案为:.
本题考查了旋转的性质,等腰直角三角形的性质,及锐角三角函数的知识,熟练运用旋转的性质是本题的关键.
22、1
【解析】
根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.
【详解】
解:两边平方得:2x+1=x2
∴x2﹣2x﹣1=0,
解方程得:x1=1,x2=﹣1,
检验:当x1=1时,方程的左边=右边,所以x1=1为原方程的解,
当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.
故答案为1.
此题考查无理方程的解,解题关键在于掌握运算法则
23、1
【解析】
试题分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.
试题解析:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,
∵△ABC的面积为1,
∴OA×OB+OA×OC=1,
∴,
解得:b1﹣b2=1.
考点:两条直线相交或平行问题.
二、解答题(本大题共3个小题,共30分)
24、(1)甲厂家的总费用:y甲=140x;乙厂家的总费用:当0<x≤10时,y乙=180x,当x>10时,y乙=110x+1100;(1)详见解析.
【解析】
(1)根据题目中的数量关系即可得到甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;
(1)分别画出甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象,结合图象分析即可.
【详解】
解:(1)甲厂家的总费用:y甲=100×0.7x=140x;
乙厂家的总费用:当0<x≤10时,y乙=100×0.9x=180x,
当x>10时,y乙=100×0.9×10+100×0.6(x﹣10)
=110x+1100;
(1)甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象如图所示:
若y甲=y乙,140x=110x+1100,x=60,
根据图象,当0<x<60时,选择甲厂家;
当x=60时,选择甲、乙厂家都一样;
当x>60时,选择乙厂家.
本题主要考查了一次函数在实际生活中的应用,涉及到的知识有运用待定系数法求函数的解析式,平面直角坐标系中交点坐标的求法,函数图象的画法等,从图表及图象中获取信息是解题的关键,属于中档题.
25、(3)y=﹣x2+(n﹣3)x+n;(2)D(﹣3,5),E(3,4);(2)5或3.
【解析】
(3)先根据四边形ABCD是矩形,点B的坐标为(n,3)(n>5),求出点A、C的坐标,再根据图形旋转的性质求出A′、C′的坐标;把A、A′、C′三点的坐标代入即可得出a、b、c的值,进而得出其抛物线的解析式;
(2)将一次函数与二次函数组成方程组,得到一元二次方程x2+(k-2)x-3=5,根据根与系数的关系求出k的值,进而求出D(-3,5),E(3,4);
(2)设P(5,p),根据平行四边形性质及点M坐标可得Q(2,4+p),分P点在AM下方与P点在AM上方两种情况,根据重合部分的面积关系及对称性求得点P的坐标后即可得▱APQM面积.
【详解】
解:(3)∵四边形ABCO是矩形,点B的坐标为(n,3)(n>5),
∴A(n,5),C(5,3),
∵矩形OA′B′C′由矩形OABC旋转而成,
∴A′(5,n),C′(﹣3,5);
将抛物线解析式为y=ax2+bx+c,
∵A(n,5),A′(5,n),C′(﹣3,5),
∴ ,
解得,
∴此抛物线的解析式为:y=﹣x2+(n﹣3)x+n;
(2)对称轴为x=3,得﹣=3,解得n=2,
则抛物线的解析式为y=﹣x2+2x+2.
由,
整理可得x2+(k﹣2)x﹣3=5,
∴x3+x2=﹣(k﹣2),x3x2=﹣3.
∴(x3﹣x2)2=(x3+x2)2﹣4x3x2=(k﹣2)2+4.
∴当k=2时,(x3﹣x2)2的最小值为4,即|x3﹣x2|的最小值为2,
∴x2﹣3=5,由x3<x2可得x3=﹣3,x2=3,即y3=4,y2=5.
∴当|x3﹣x2|最小时,抛物线与直线的交点为D(﹣3,5),E(3,4);
(2)①当P点在AM下方时,如答图3,
设P(5,p),易知M(3,4),从而Q(2,4+p),
∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,
∴PQ′必过AM中点N(5,2),
∴可知Q′在y轴上,
易知QQ′的中点T的横坐标为3,而点T必在直线AM上,
故T(3,4),从而T、M重合,
∴▱APQM是矩形,
∵易得直线AM解析式为:y=2x+2,
∵MQ⊥AM,
∴直线QQ′:y=﹣x+,
∴4+p=﹣×2+,
解得:p=﹣,
∴PN=,
∴S▱APQM=2S△AMP=4S△ANP=4××PN×AO=4×××3=5;
②当P点在AM上方时,如答图2,
设P(5,p),易知M(3,4),从而Q(2,4+p),
∵△PM Q′与▱APQM重合部分的面积是▱APQM面积的,
∴PQ′必过QM中点R(,4+),
易得直线QQ′:y=﹣x+p+5,
联立,
解得:x=,y= ,
∴H(,),
∵H为QQ′中点,
故易得Q′(,),
由P(5,p)、R(,4+)易得直线PR解析式为:y=(﹣)x+p,
将Q′(,)代入到y=(﹣)x+p得:=(﹣)×+p,
整理得:p2﹣9p+34=5,
解得p3=7,p2=2(与AM中点N重合,舍去),
∴P(5,7),
∴PN=5,
∴S▱APQM=2S△AMP=2××PN×|xM﹣xA|=2××5×2=3.
综上所述,▱APQM面积为5或3.
本题为二次函数的综合应用,涉及待定系数法确定函数解析式、二次函数的性质、一元二次方程根与系数的关系、方程思想及分类讨论思想等知识点.在(2)中利用求得n的值是解题的关键,在(2)中确定出k的值是解题的关键,在(2)中根据点P的位置分类讨论及根据已知条件求出点P的坐标是解决本题的难点.
26、(1)今年A款手机每部售价1元;(2)进A款手机20部,B款手机40部时,这批手机获利最大.
【解析】
(1)设今年A款手机的每部售价x元,则去年售价每部为(x+400)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A款手机a部,则B款手机(60-a)部,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值
【详解】
解:(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,
由题意,得 ,
解得:x=1.
经检验,x=1是原方程的根.答:今年A款手机每部售价1元;
(2)设今年新进A款手机a部,则B款手机(60﹣a)部,获利y元,
由题意,得y=(1﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+2.
∵B款手机的进货数量不超过A款手机数量的两倍,
∴60﹣a≤2a,
∴a≥20.
∵y=﹣100a+2.
∴k=﹣100<0,
∴y随a的增大而减小.
∴a=20时,y最大=34000元.
∴B款手机的数量为:60﹣20=40部.
∴当新进A款手机20部,B款手机40部时,这批手机获利最大.
考查一次函数的应用, 分式方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.
题号
一
二
三
四
五
总分
得分
分数段(成绩为x分)
频数
频率
50≤x<60
16
0.08
60≤x<70
a
0.31
70≤x<80
72
0.36
80≤x<90
c
d
90≤x≤100
12
b
A款手机
B款手机
进货价格(元)
1100
1400
销售价格(元)
今年的销售价格
2000
吉林省吉林市2024-2025学年数学九上开学考试模拟试题【含答案】: 这是一份吉林省吉林市2024-2025学年数学九上开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届吉林省吉林市舒兰市九上数学开学调研试题【含答案】: 这是一份2025届吉林省吉林市舒兰市九上数学开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届吉林省白山长白县联考数学九上开学监测模拟试题【含答案】: 这是一份2025届吉林省白山长白县联考数学九上开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。