2024年吉林省吉林市第七中学九上数学开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)欧几里得是古希腊数学家,所著的《几何原本》闻名于世.在《几何原本》中,形如x2+ax=b2的方程的图解法是:如图,以和b为直角边作Rt△ABC,再在斜边上截取BD=,则图中哪条线段的长是方程x2+ax=b2的解?答:是( )
A.ACB.ADC.ABD.BC
2、(4分)下列分解因式正确的是( )
A.-a+a3=-a(1+a2)B.2a-4b+2=2(a-2b)
C.a2-4=(a-2)2D.a2-2a+1=(a-1)2
3、(4分)如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F,若DF=3,则AC的长为( )
A.B.C.D.
4、(4分)如图,四边形ABCD是正方形,点E、F分别在AD、CD上,AF、BE相交于点G,且AF=BE,则下列结论不正确的是:( )
A.AF⊥BEB.BG=GFC.AE=DFD.∠EBC=∠AFD
5、(4分)下列各曲线表示的y与x的关系中,y不是x的函数的是( )
A.B.
C.D.
6、(4分)已知四边形,对角线与交于点,从下列条件中:①;②;③;④.任取其中两个,以下组合能够判定四边形是平行四边形的是( )
A.①②B.②③C.②④D.①④
7、(4分)下列图书馆的标志中,是中心对称图形的是( )
A.B.
C.D.
8、(4分)某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( )
A.学一样
B.成绩虽然一样,但方差大的班里学生学习潜力大
C.虽然平均成绩一样,但方差小的班学习成绩稳定
D.方差较小的班学习成绩不稳定,忽高忽低
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图.将平面内Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AC=2,BC=1,则线段BE的长为__________.
10、(4分)平面直角坐标系中,点关于原点的对称点坐标为______.
11、(4分)当x________时,分式有意义.
12、(4分)如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.
13、(4分)如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在梯形中中,,是的中点,,,,,点是边上一动点,设的长为.
(1)当的值为多少时,以点为顶点的三角形为直角三角形;
(2)当的值为多少时,以点为顶点的四边形为平行四边形;
(3)点在边上运动的过程中,以为顶点的四边形能否构成菱形?试说明理由.
15、(8分)如图,在直角坐标系中,每个小方格都是边长为的正方形,的顶点均在格点上,点的坐标是.
先将沿轴正方向向上平移个单位长度,再沿轴负方向向左平移个单位长度得到,画出,点坐标是________;
将绕点逆时针旋转,得到,画出,并求出点的坐标是________;
我们发现点、关于某点中心对称,对称中心的坐标是________.
16、(8分)如图,AD=CB,AB=CD,求证:△ACB≌△CAD
17、(10分)如图,在网格平面直角坐标系中,△ABC的顶点均在格点上.
(1)请把△ABC向上平移2个单位长度,再向左平移1个单位长度得到△A'B′C',画出△A'B′C’并写出点A′,B′的坐标.
(2)求△ABC的面积.
18、(10分)作平行四边形ABCD的高CE,B是AE的中点,如图.
(1)小琴说:如果连接DB,则DB⊥AE,对吗?说明理由.
(2)如果BE:CE=1: ,BC=3cm,求AB.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于的方程的一个根是,则方程的另一个根是________.
20、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.
21、(4分)一次函数y=kx+b的图象如图所示,若点A(3,m)在图象上,则m的值是__________.
22、(4分)根据如图所示的程序,当输入x=3时,输出的结果y=________.
23、(4分)当x=2时,二次根式的值为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)一个多边形的外角和是内角和的,求这个多边形的边数.
25、(10分)如图一次函数y=kx+b的图象经过点A和点B.
(1)写出点A和点B的坐标并求出k、b的值;
(2)求出当x=时的函数值.
26、(12分)如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
解一元二次方程,由求根公式求得, 已知AC、BC,由勾股定理求得AB,则AD等于AB和BD之差,比较AD的长度和x的解即可知结论.
【详解】
x2+ax=b2 ,
即x2+ax-b2=0 ,
∴
∵∠ACB=90°,
∴AB=,
则
故答案为:B.
本题主要考查一元二次方程的根,与勾股定理,解题关键在于能够求出AB的长度.
2、D
【解析】
根据因式分解的定义进行分析.
【详解】
A、-a+a3=-a(1-a2)=-a(1+a)(1-a),故本选项错误;
B、2a-4b+2=2(a-2b+1),故本选项错误;
C、a2-4=(a-2)(a+2),故本选项错误;
D、a2-2a+1=(a-1)2,故本选项正确.
故选D.
考核知识点:因式分解.
3、C
【解析】
首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠3,根据角平分线的定义推知∠1=∠3,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.
【详解】
如图,
∵D、E分别为AC、BC的中点,
∴DE∥AB,
∴∠2=∠3,
又∵AF平分∠CAB,
∴∠1=∠3,
∴∠1=∠2,
∴AD=DF=3,
∴AC=2AD=1.
故选C.
本题考查了三角形中位线定理,等腰三角形的判定与性质.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.
4、B
【解析】
由四边形ABCD是正方形,可得AD=BA,∠D=∠BAE=90°,利用直角三角形全等的判定(HL)可得Rt△ABE≌Rt△DAF,可得出边角关系,对应选项逐一验证即可.
【详解】
∵四边形ABCD是正方形,
∴ AD=AB,∠D=∠BAE=90°,
又AF=BE,
∴Rt△ABE≌Rt△DAF(HL),
∴∠ABE=∠DAF,∠AEB=∠DFA,AE=DF,因此C选项正确,
又∵∠DAF+∠DFA =90°,
∴∠DAF+∠AEB=90°,
∴∠AGE=90°,即AF⊥BE,因此A选项正确,
∵∠EBC+∠ABE=90°,∠ABE+∠AEB=90°,∠AEB=∠AFD,
∴∠EBC=∠AFD,因此D选项正确,
∵BE=AF,若BG=GF,则AG=GE,可得,∠DAF=45°,则AF应该为正方形的对角线,从图形来看,AF不是对角线,所以与题目矛盾,所以B选项错误,
故选:B.
考查了正方形的性质,全等三角形的判定和性质,余角的定义,垂直的定义,熟记几何图形的概念,判定和性质定理是解题的关键,注意题目要求选不正确的.
5、C
【解析】
根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.
【详解】
根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.
故选C.
本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
6、D
【解析】
以①④作为条件能够判定四边形ABCD是平行四边形,根据平行得出全等三角形,即可求出OB=OD,根据平行四边形的判定推出即可;
【详解】
以①④作为条件,能够判定四边形ABCD是平行四边形.
理由:∵AB//CD,
∴∠OAB=∠OCD,
在△AOB和△COD中,
∴△AOB≌△COD(ASA),
∴OB=OD,
∴四边形ABCD是平行四边形.
故选:D.
本题考查平行四边形的全等条件,熟练掌握平行四边形的性质的解题关键
7、C
【解析】
根据中心对称图形的概念判断即可.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误.
故选:C.
此题主要考查了中心对称图形的概念.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
8、C
【解析】
分析:由题意知数学成绩的平均分相等,但他们成绩的方差不等,数学的平均成绩一样,说明甲和乙的平均水平基本持平,方差较小的同学,数学成绩比较稳定,选择学生参加考试时,还要选方差较小的学生.
解答:解:∵数学成绩的平均分相等,但他们成绩的方差不等,
数学的平均成绩一样,说明甲和乙的平均水平基本持平,
方差较小的同学,数学成绩比较稳定,
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
试题解析:∵Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC,
∴CE=CA=2,∠ECF=∠ACB=90°,
∴点E、C、B共线,
∴BE=EC+BC=2+1=1.
10、
【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.
【详解】
∵关于原点的对称两个点坐标符号相反,
∴点关于原点的对称点坐标为,
故答案为:.
此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
11、
【解析】
根据分母不等于0列式求解即可.
【详解】
由题意得,x−1≠0,
解得x≠1.
故答案为:≠1.
本题考查分式有意义的条件,熟练掌握分式的基本性质是解题关键.
12、56°
【解析】
根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.
【详解】
∵四边形ABCD是矩形,
∴AD//BC,
∴∠FEC=∠1=62°,
∵将一张矩形纸片ABCD沿 EF折叠后,点C落在AB边上的点 G 处,
∴∠GEF=∠FEC=62°,
∴∠BEG=180°-∠GEF-∠FEC=56°,
故答案为56°.
本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.
13、y=2x+1
【解析】
试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式.
解:由图象可知,点(0,0)、(2,4)在直线OA上,
∴向上平移1个单位得到的点是(0,1)(2,5),
那么这两个点在将直线OA向上平移1个单位,得到一个一次函数的图象y=kx+b上,
则b=1,2k+b=5
解得:k=2.
∴y=2x+1.
故答案为:y=2x+1.
点睛:本题主要考查待定系数法求一次函数的解析式.解题的关键在于根据图象确定出平移后的点的坐标.
三、解答题(本大题共5个小题,共48分)
14、(1)当的值为3或8时,以点为顶点的三角形为直角三角形;(2)当的值为1或11时,以点为顶点的四边形为平行四边形;(3)以点为顶点的四边形能构成菱形,理由详见解析.
【解析】
(1)过AD作于,于,当时,分情况讨论,求出即可;
(2)分为两种情况,画出图形,根据平行四边形的性质推出即可;
(3)化成图形,根据菱形的性质和判定求出BP即可.
【详解】
解(1)如图,分别过AD作于,于
∴
而
∴
∴
若以为顶点的三角形为直角三角形,
则或,(在图中不存在)
当时
∴与重合
∴
当时
∴与重合
∴
故当的值为3或8时,以点为顶点的三角形为直角三角形;
(2)若以点为顶点的四边形为平行四边形,那么,有两种情况:
①当在的左边,
∵是的中点,
∴
∴
②当在的右边,
故当的值为1或11时,以点为顶点的四边形为平行四边形;
(3)由(2)知,当时,以点为顶点的四边形能构成菱形
当时,以点为顶点的四边形是平行四边形,
∴,过作于,
∵,,则,
∴.
∴,
∴
故此时是菱形
即以点为顶点的四边形能构成菱形.
此题考查直角三角形的性质,平行四边形的判定,解题关键在于作辅助线和利用勾股定理进行计算.
15、, , .
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用旋转的性质得出对应点位置进而得出答案;
(3)直接利用关于点对称的性质得出对称中心即可.
【详解】
(1)如图所示:△A1B1C1,即为所求,点C1坐标是:(−2,1);
故答案为(−2,1);
(2)如图所示:△A2B1C2,即为所求,点C2坐标是:(−5,0);
故答案为(−5,0);
(3)点C. C2关于某点中心对称,对称中心的坐标是:(−3,−1).
故答案为(−3,−1).
本题考查了坐标系中作图,解题的关键是根据图形找出相对应的点即可.
16、见解析
【解析】
利用SSS即可证明.
【详解】
证明:在△ACB与△CAD中
∴△ACB≌△CAD(SSS)
本题考查的是全等三角形的判定,能够根据SSS证明三角形全等是解题的关键.
17、(1);;(2)7
【解析】
(1)将A、B、C三点分别按要求平移,即可得出新坐标;;,连接三点,即可得出新三角形;
(2)将△ABC和周围的三个三角形整体长方形,长方形面积很容易得出,分别减去周围三个三角形的面积,即可得出,.
【详解】
解:(1)如图
;
(2)
(1)此题主要考查平面坐标系中的平移问题,对应坐标按要求平移即可得出新坐标;
(2)将△ABC和周围的三个三角形整体长方形,长方形面积很容易得出,分别减去周围三个三角形的面积,即可得出.
18、(1)BD⊥AE,理由见解析;(2)(cm).
【解析】
(1)直接利用平行四边形的性质得出BD∥CE,进而得出答案;
(2)直接利用勾股定理得出BE的长,进而得出答案.
【详解】
解:(1)对,
理由:∵ABCD是平行四边形,
∴CD∥AB且CD=AB.
又B是AE的中点,
∴CD∥BE且CD=BE.
∴BD∥CE,
∵CE⊥AE,
∴BD⊥AE;
(2)设BE=x,则CE=x,
在Rt△BEC中:x2+(x)2=9,
解得:x=,
故AB=BE=(cm).
此题主要考查了平行四边形的性质以及勾股定理,正确应用平行四边形的性质是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-2
【解析】
根据一元二次方程根与系数的关系求解即可.
【详解】
设方程的另一个根为x1,
∵方程的一个根是,
∴x1+0=﹣2,即x1=﹣2.
故答案为:﹣2.
本题主要考查一元二次方程的根与系数的关系(韦达定理),
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=﹣,x1x2=.
20、(4,0)
【解析】
根据抛物线p=ax2−10ax+8(a>0)经过点C、D和二次函数图象具有对称性,可以求得该抛物线顶点的横坐标和CD的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.
【详解】
解:∵抛物线p=ax2−10ax+8=a(x−5)2−25a+8,
∴该抛物线的顶点的横坐标是x=5,当x=0时,y=8,
∴点D的坐标为:(0,8),
∴OD=8,
∵抛物线p=ax2−10ax+8(a>0)经过点C、D,CD∥AB∥x轴,
∴CD=5×2=10,
∴AD=10,
∵∠AOD=90°,OD=8,AD=10,
∴AO=,
∵AB=10,
∴OB=10−AO=10−6=4,
∴点B的坐标为(4,0),
故答案为:(4,0)
本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
21、2.5
【解析】
先用待定系数法求出直线解析式,再将点A代入求解可得.
【详解】
解:将(-2,0)、(0,1)代入y=kx+b,得:,
解得:
∴y=x+1,
将点A(3,m)代入,得:
即
故答案为:2.5
本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.
22、1
【解析】
根据自变量与函数值的对应关系,可得相应的函数值.
【详解】
当x=3时,y=﹣3+5=1.
故答案为:1.
本题考查了函数值,将自变量的值代入相应的函数关系式是解题的关键.
23、3
【解析】
【分析】把x=2代入二次根式进行计算即可得.
【详解】把x=2代入得,
==3,
故答案为:3.
【点睛】本题考查了二次根式的值,准确计算是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、七边形.
【解析】
分析:多边形的内角和定理为(n-2)×180°,多边形的外角和为360°,根据题意列出方程求出n的值.
详解:根据题意可得: 解得:
点睛:本题主要考查的是多边形的内角和公式以及外角和定理,属于基础题型.明白这两个公式是解题的关键.
25、.(1)k=-1,b=1 (1)-1
【解析】
(1)由图可直接写出的坐标,将这两点代入联立求解可得出和的值;
(1)由(1)的关系式,将代入可得出函数值.
【详解】
解:(1)由图可得:A(-1,3),B(1,-3),
将这两点代入一次函数y=kx+b得:,
解得:
∴k=-1,b=1;
(1)将x=代入y=-1x+1得:y=-1.
本题考查待定系数法求一次函数解析式,关键在于看出图示的坐标信息.
26、
【解析】
如图,连接AD,根据垂直平分线的性质可得BD=AD,进而得到∠DAC的度数和DC的长,再根据勾股定理求出AC的长即可.
【详解】
如图,连接AD,
∵ED是AB的垂直平分线,
∴AD=BD=4,
∴∠BAD=∠B=30°,
∴∠DAC=30°,
∵DC=AD=2,
∴AC=.
故答案是.
本题主要考查垂直平分线的性质以及三角函数,求出∠DAC的大小是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024年吉林省白山市数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年吉林省白山市数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年白山市重点中学九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024年白山市重点中学九上数学开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。