|试卷下载
终身会员
搜索
    上传资料 赚现金
    黄南市重点中学2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    黄南市重点中学2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】01
    黄南市重点中学2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】02
    黄南市重点中学2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黄南市重点中学2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】

    展开
    这是一份黄南市重点中学2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在▱ABCD中,∠C=130°,BE平分∠ABC,则∠AEB等于( )
    A.B.C.D.
    2、(4分)下列图形中,不是中心对称图形的是( )
    A.B.C.D.
    3、(4分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )
    A.①②B.②③C.①③D.①④
    4、(4分)下列命题中,是真命题的是( )
    A.对角线互相垂直的四边形是菱形B.对角形相等的四边形是矩形
    C.顺次连结平行四边形各边中点所得四边形是平行四边形D.一组邻边相等的平行四边形是正方形
    5、(4分)抛物线y=x2﹣4x+5的顶点坐标是( )
    A.(2,1)B.(﹣2,1)C.(2,5)D.(﹣2,5)
    6、(4分)顺次连接对角线相等的四边形的各边中点,所形成的四边形是
    A.平行四边形B.菱形C.矩形D.正方形
    7、(4分)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:
    则该二次函数图象的对称轴为( )
    A.y轴B.直线x=C.直线x=1D.直线x=
    8、(4分)已知直线 y=-x+6交x轴于点A,交y轴于点B,点P在线段OA上,将△PAB沿BP翻折,点A的对应点A′恰好落在y轴上,则的值为( )
    A.B.1C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某校九年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:
    有一位同学根据上面表格得出如下结论:
    ①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.
    上述结论正确的是_______(填序号).
    10、(4分)已知直线与直线平行且经过点,则______.
    11、(4分)点P在第四象限内,P到轴的距离是3,到轴的距离是5,那么点P的坐标为 .
    12、(4分)如图在中,,,,是边上的两点,且满足,若,,,的长是__________.
    13、(4分)如图,小明作出了边长为2的第1个正△A1B1C1 , 算出了正△A1B1C1的面积. 然后分别取△A1B1C1的三边中点A2、B2、C2 , 作出了第2个正△A2B2C2 , 算出了正△A2B2C2的面积. 用同样的方法,作出了第3个正△A3B3C3 , 算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.
    (1)求该种商品每次降价的百分率;
    (2)若该商品进价为280元/件,两次降价共售此种商品100件,为使两次降价销售的总利润不少于8000元,则第一次降价后至少要售出这种商品多少件?
    15、(8分)如图所示的一块地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求这块地的面积.
    16、(8分)在校园手工制作活动中,甲、乙两人接到手工制作纸花任务,已知甲每小时制作纸花比乙每小时制作纸花少20朵,甲制作120朵纸花的时间与乙制作160朵纸花的时间相同
    (1)求甲、乙两人每小时各制作纸花多少朵?
    (2)本次活动学校需要该种纸花不少于350朵,若由甲、乙两人共同制作,则至少需要几小时完成任务?
    17、(10分)高铁的开通给滕州人民出行带来极大的方便,从滕州到北京相距,现在乘高铁列车比以前乘特快列车少用,已知高铁列车的平均速度是特快列车的2.8倍,求高铁列车的平均行驶速度.
    18、(10分)(1)计算:(-1)2019-|-4|+(3.14-π)0+()-1
    (2)先化简,再求值:(1-)÷,再从-1,0,1和2中选一个你认为合适的数作为x的值代入求值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为__________.
    20、(4分)某高科技开发公司从2013年起开始投入技术改进资金,经过技术改进后,其产品的生产成本不断降低,具体数据如下表:请你认真分析表中数据,写出可以表示该变化规律的表达式是____________.
    21、(4分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M是BC边上一个动点,联结AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转恰好至△NGF.给出以下三个结论:①∠AND=∠MPC; ②△ABM≌△NGF;③S四边形AMFN=a1+b1.其中正确的结论是_____(请填写序号).
    22、(4分)不等式x+3>5的解集为_____.
    23、(4分)若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P.
    (1)求该定点P的坐标;
    (2)已知点A、B坐标分别为(0,1)、(2,1),若直线l与线段AB相交,求k的取值范围;
    (3)在0≤x≤2范围内,任取3个自变量x1,x2、x3,它们对应的函数值分别为y1、y2、y3,若以y1、y2、y3为长度的3条线段能围成三角形,求k的取值范围.
    25、(10分)已知y与x+3成正比例,且当x=1时,y=8
    (1)求y与x之间的函数关系式;
    (2)若点(a,6)在这个函数的图象上,求a的值.
    26、(12分)某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定,现从两家提供的样品中各抽取了6件进行检查,超过标准质量部分记为正数,不足部分记为负数,若该皮具的标准质量为500克,测得它们质量如下(单位:g)
    (1)分别计算甲、乙两厂抽样检测的皮具总质量各是多少克?
    (2)通过计算,你认为哪一家生产皮具的质量比较稳定?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由平行四边形ABCD中,∠C=130°,可求得∠ABC的度数,又由BE平分∠ABC,即可求得∠CBE的度数,然后由平行线的性质,求得答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AD∥BC,
    ∴∠ABC+∠C=180°,∠AEB=∠CBE,
    ∵∠C=130°,
    ∴∠ABC=180°-∠C=50°,
    ∵BE平分∠ABC,
    ∴∠CBE=∠ABC=25°,
    ∴∠AEB=∠CBE=25°.
    故选D.
    此题考查了平行四边形的性质,属于基础题,解答本题的关键是掌握平行四边形邻角互补的性质,难度一般.
    2、A
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.
    【详解】
    A、不是中心对称图形,故此选项正确;
    B、是中心对称图形,故此选项错误;
    C、是中心对称图形,故此选项错误;
    D、是中心对称图形,故此选项错误;
    故选:A.
    此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.
    3、D
    【解析】
    试题解析:∵AE=AB,
    ∴BE=2AE,
    由翻折的性质得,PE=BE,
    ∴∠APE=30°,
    ∴∠AEP=90°﹣30°=60°,
    ∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,
    ∴∠EFB=90°﹣60°=30°,
    ∴EF=2BE,故①正确;
    ∵BE=PE,
    ∴EF=2PE,
    ∵EF>PF,
    ∴PF<2PE,故②错误;
    由翻折可知EF⊥PB,
    ∴∠EBQ=∠EFB=30°,
    ∴BE=2EQ,EF=2BE,
    ∴FQ=3EQ,故③错误;
    由翻折的性质,∠EFB=∠EFP=30°,
    ∴∠BFP=30°+30°=60°,
    ∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,
    ∴∠PBF=∠PFB=60°,
    ∴△PBF是等边三角形,故④正确;
    综上所述,结论正确的是①④.
    故选D.
    考点:1.翻折变换(折叠问题);2.矩形的性质.
    4、C
    【解析】
    根据菱形、矩形、平行四边形、正方形的判定定理逐项判断即可.
    【详解】
    解:A. 对角线互相垂直的平行四边形是菱形,此选项不符合题意;
    B. 对角形相等的平行四边形是矩形,此选项不符合题意;
    C. 顺次连结平行四边形各边中点所得四边形是平行四边形 ,此选项符合题意;
    D. 一组邻边相等的矩形是正方形,此选项不符合题意;
    故选:C.
    本题考查的知识点是菱形、矩形、平行四边形、正方形的判定定理,熟记菱形、矩形、平行四边形、正方形的判定定理内容是解此题的关键.
    5、A
    【解析】
    先把抛物线的解析式配成顶点式得到y=(x﹣2)2+1,然后根据抛物线的性质即可求解.
    【详解】
    ∵y=x2﹣4x+5=(x﹣2)2+1,
    ∴抛物线的顶点坐标为(2,1).
    故选A.
    本题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为x=h,本题还考查了利用配方法化二次函数的一般式化为顶点式.
    6、B
    【解析】
    菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.
    【详解】
    解:菱形,理由为:
    如图所示,
    ∵E,F分别为AB,BC的中点,
    ∴EF为△ABC的中位线,
    ∴EF∥AC,EF=AC,
    同理HG∥AC,HG=AC,
    ∴EF∥HG,且EF=HG,
    ∴四边形EFGH为平行四边形,
    ∵EH=BD,AC=BD,
    ∴EF=EH,则四边形EFGH为菱形,
    故选B.
    此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.
    7、D
    【解析】
    观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x= .故选D.
    8、C
    【解析】
    设:PA=a=PA′,则OP=6-a,OA′=-6,由勾股定理得:PA′2=OP2+OA′2,即可求解.
    【详解】
    解:如图,y=-x+6,令x=0,则y=6,令y=0,则x=6,
    故点A、B的坐标分别为(6,0)、(0,6),则AB==A′B,
    设:PA=a=PA′,则OP=6-a,OA′=-6,
    由勾股定理得:PA′2= OA′2+OP2,
    即(a)2=(-6)2+(6-a)2,
    解得:a=12-,
    则PA=12-,OP=−6,
    则.
    故选:C.
    本题考查的是一次函数图象上点的坐标特征,关键在于在画图的基础上,利用勾股定理:PA′2= OA′2+OP2,从而求出PA、OP线段的长度,进而求解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、①②③.
    【解析】
    根据平均数、方差和中位数的意义,可知:甲乙的平均数相同,所以①甲、乙两班学生的平均水平相同.根据中位数可知乙的中位数大,所以②乙班优秀的人数比甲班优秀的人数多.根据方差数据可知,方差越大波动越大,反之越小,所以甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.
    故答案为①②③.
    本题考查统计知识中的中位数、平均数和方差的意义.要知道平均数和中位数反映的是数据的集中趋势,方差反映的是离散程度.
    10、1
    【解析】
    根据平行直线的解析式的k值相等可得k=-1,再将经过的点的坐标代入求解即可.
    【详解】
    解:∵直线与直线平行,
    ∴k=-1.
    ∴直线的解析式为.
    ∵直线经过点(1,1),
    ∴b=4.
    ∴k+b=1.
    本题考查了两直线平行问题,主要利用了两平行直线的解析式的k值相等,需熟记.
    11、(5,-1).
    【解析】
    试题分析:已知点P在第四象限,可得点P的横、纵坐标分别为正数、负数,又因为点P到x轴的距离为1,到y轴的距离为5,所以点P的横坐标为5或-5,纵坐标为1或-1.所以点P的坐标为(5,-1).
    考点:各象限内点的坐标的特征.
    12、
    【解析】
    以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如下图,利用等腰直角三角形的性质得,利用旋转的性质得,,则,在中利用勾股定理可计算出,然后再根据证明三角形即可得到.
    【详解】
    以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如图
    按顺时针方向旋转得到
    在中,
    将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处)
    ,
    ,即
    在和中
    ∴.
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和勾股定理.
    13、
    【解析】
    根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.
    【详解】
    正△A1B1C1的面积是×22==,
    ∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,
    ∴面积的比是1:4,
    则正△A2B2C2的面积是× ==;
    ∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,
    ∴面积是×==;
    依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,
    第n个三角形的面积是.
    故答案是: , .
    考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)50件.
    【解析】
    (1)设该种商品每次降价的百分率为x,根据该种商品的原价及经两次降价后的价格,即可得出关于x的一元二次方程,解之即可得出结论;
    (2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100−m)件,根据总利润=单件利润×销售数量结合两次降价销售的总利润不少于8000元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.
    【详解】
    解:(1)设每次降价的百分率为,
    则可得,
    ∴,或(舍),
    ∴该商品每次降低的百分率为.
    (2)设第一次降价后售出件,则第二次售出件.
    则第一次降价后单价为:(元/件),

    解得:,
    ∴第一次降价后至少要售出50件.
    本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量间的关系,找出关于m的一元一次不等式.
    15、96 m2 .
    【解析】
    先连接AC,在Rt△ACD中,利用勾股定理可求AC,进而求出AC2+BC2=AB2,利用勾股定理逆定理可证△ABC是直角三角形,再利用S四边形ABCD=S△ABC-S△ACD,即可求地的面积.
    【详解】
    解:连接AC,则△ADC为直角三角形,
    因为AD=8,CD=6,
    所以AC=10.
    在△ABC中,AC=10,BC=24,AB=26.
    因为102+242=262,
    所以△ABC也是直角三角形.
    所以这块地的面积为S=S△ABC-S△ADC=AC·BC-AD·CD=×10×24-×8×6=120-24=96 m2.
    所以这块地的面积为96 m2 .
    故答案为96 m2
    本题考查了勾股定理及其逆定理的应用.关键是根据∠ADC =90°,构造直角三角形ACD,并证出△ABC是直角三角形.
    16、 (1)甲每小时制作纸花60朵,每小时制作纸花80朵;(2)至少需要2.5小时完成任务.
    【解析】
    (1)根据“甲制作120朵纸花的时间与乙制作160朵纸花的时间相同”列方程求解即可;
    (2)根据“不少于350朵”列出不等式求解即可.
    【详解】
    (1)设乙每小时制作纸花朵,根据题意,得

    解得x=80
    经检验,x=80 是原方程的解.

    ∴甲每小时制作纸花60朵,每小时制作纸花80朵.
    (2)设需要小时完成任务,根据题意,得

    解得y≥2.5
    ∴至少需要2.5小时完成任务.
    本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.
    17、高铁列车平均速度为.
    【解析】
    设特快列车平均速度为,则高铁列车平均速度为,根据现在乘高铁列车比以前乘特快列车少用 列方程求解即可.
    【详解】
    设特快列车平均速度为,则高铁列车平均速度为,
    由题意得:,
    解得:,
    经检验:是原方程的解,
    则;
    答:高铁列车平均速度为.
    本题是分式方程的应用,属于行程问题;两类车:高铁和特快,路程都是,高铁列车的平均速度是特快列车的倍,时间相差,根据速度的关系设未知数,根据时间的关系列方程,注意分式方程要检验.
    18、(1)-1;(2)x=-1时,原式=.
    【解析】
    (1)根据绝对值.零指数幂和负整数指数幂可以解答本题;
    (2)根据分式的减法和除法可以化简题目中的式子,然后从-1,0,1和2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.
    【详解】
    解:(1)(-1)2019-|-4|+(3.14-π)0+()-1
    =(-1)-4+1+3
    =-1;
    (2)(1-)÷
    =
    =
    =,
    当x=-1时,原式=.
    本题考查分式的化简求值.零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据勾股定理,可得AC的长,根据圆的性质,可得答案.
    【详解】
    由题意得
    故可得,
    又∵点B的坐标为2
    ∴M点的坐标是,
    故答案为:.
    此题考查勾股定理,解题关键在于结合实数与数轴解决问题.
    20、y=
    【解析】
    有表格中数据分析可知xy=2.5×7.2=3×6=4×4.5=4.5×4=18,就可得到反比例函数关系,再设出反比例函数解析式,利用待定系数法求出即可.
    【详解】
    由题意可得此函数解析式为反比例函数解析式,设其为解析式为y=.
    当x=2.5时,y=7.2,
    可得7.2=,
    解得k=18
    ∴反比例函数是y=.
    此题主要考查反比例函数的应用,解题的关键是根据题意找出等量关系.
    21、①②③.
    【解析】
    ①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∴∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,可知∠DAM=∠AND,②根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM≌△NGF;③由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=AM1=a1+b1;
    【详解】
    ①∵四边形ABCD是正方形,
    ∴∠BAD=∠ADC=∠B=90°,
    ∴∠BAM+∠DAM=90°,
    ∵将△ABM绕点A旋转至△ADN,
    ∴∠NAD=∠BAM,∠AND=∠AMB,
    ∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,
    ∴∠DAM=∠AND,故①正确,
    ②∵将△MEF绕点F旋转至△NGF,
    ∴GN=ME,
    ∵AB=a,ME=a,
    ∴AB=ME=NG,
    在△ABM与△NGF中,AB=NG=a,∠B=∠NGF=90°,GF=BM=b,
    ∴△ABM≌△NGF;故②正确;
    ③∵将△ABM绕点A旋转至△ADN,
    ∴AM=AN,
    ∵将△MEF绕点F旋转至△NGF,
    ∴NF=MF,
    ∵△ABM≌△NGF,
    ∴AM=NF,
    ∴四边形AMFN是矩形,
    ∵∠BAM=∠NAD,
    ∴∠BAM+DAM=∠NAD+∠DAN=90°,
    ∴∠NAM=90°,
    ∴四边形AMFN是正方形,
    ∵在Rt△ABM中,a1+b1=AM1,
    ∴S四边形AMFN=AM1=a1+b1;故③正确
    故答案为①②③.
    本题考查了全等三角形的判定和性质,正方形的性质,旋转的性质,正确的理解题意是解题的关键.
    22、x>1.
    【解析】
    利用不等式的基本性质,把不等号左边的3移到右边,合并同类项即可求得原不等式的解集.
    【详解】
    移项得,x>5﹣3,
    合并同类项得,x>1.
    故答案为:x>1.
    本题主要考查了一元一次不等式的解法,解不等式要依据不等式的基本性质.
    23、-1
    【解析】
    先提取公因式ab,整理后再把a+b的值代入计算即可.
    【详解】
    解:a+b=5时,
    原式=ab(a+b)=5ab=-10,
    解得:ab=-1.
    故答案为:-1.
    本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键,也是难点.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(2,3);(2);(3)﹣<k<0或0<k<
    【解析】
    (1)对题目中的函数解析式进行变形即可求得点P的坐标;
    (2)根据题意可以得到相应的不等式组,从而可以求得k的取值范围;
    (3)根据题意和三角形三边的关系,利用分类讨论的数学思想可以求得k的取值范围.
    【详解】
    解:(1)∵y=2kx﹣4k+3=2k(x﹣2)+3,
    ∴y=2kx﹣4k+3(k≠0)恒过某一定点P的坐标为(2,3),
    即点P的坐标为(2,3);
    (2)∵点A、B坐标分别为(0,1)、(2,1),直线l与线段AB相交,直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P(2,3),

    解得,k;
    (3)当k>0时,直线y=2kx﹣4k+3中,y随x的增大而增大,
    ∴当0≤x≤2时,﹣4k+3≤y≤3,
    ∵以y1、y2、y3为长度的3条线段能围成三角形,
    ∴,得k<,
    ∴0<k<;
    当k<0时,直线y=2kx﹣4k+3中,y随x的增大而减小,
    ∴当0≤x≤2时,3≤y≤﹣4k+3,
    ∵以y1、y2、y3为长度的3条线段能围成三角形,
    ∴3+3>﹣4k+3,得k>﹣,
    ∴﹣<k<0,
    由上可得,﹣<k<0或0<k<.
    故答案为(1)(2,3);(2);(3)﹣<k<0或0<k<
    本题考查一次函数图象与系数的关系、一次函数图象上点的坐标特征、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.
    25、(1)y=1x+6;(1)2.
    【解析】
    分析:(1)根据y与x+3成正比,设y=k(x+3),把x与y的值代入求出k的值,即可确定出关系式;
    (1)把点(a,6)代入一次函数解析式求出a的值即可.
    详解:(1)根据题意:设y=k(x+3),
    把x=1,y=8代入得:8=k(1+3),
    解得:k=1.
    则y与x函数关系式为y=1(x+3)=1x+6;
    (1)把点(a,6)代入y=1x+6得:6=1a+6,
    解得a=2.
    点睛:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.
    26、 (1)甲厂抽样检测的皮具总质量为3000克,乙厂抽样检测的皮具总质量为3000克;(2)乙公司生产皮具的质量比较稳定.
    【解析】
    (1)求出记录的质量总和,再加上标准质量即可;
    (2)以标准质量为基准,根据方差的定义求出两公司的方差,相比即可.
    【详解】
    解:(1)甲厂抽样检测的皮具总质量为500×6+(﹣3+0+0+1+2+0)=3000(克),
    乙厂抽样检测的皮具总质量为500×6+(﹣2+1﹣1+0+1+1)=3000(克);
    (2)∵=×(﹣3+0+0+1+2+0)=0,
    ∴=×[(﹣3﹣0)2+(0﹣0)2×3+(1﹣0)2+(2﹣0)2]≈2.33,
    ∵=×(﹣2+1﹣1+0+1+1)=0,
    ∴=×[(﹣2﹣0)2+3×(1﹣0)2+(﹣1﹣0)2+(0﹣0)2]≈1.33,
    ∵<,
    ∴乙公司生产皮具的质量比较稳定.
    本题主要考查了方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.
    题号





    总分
    得分
    x
    ﹣1
    0
    1
    2
    3
    y
    5
    1
    ﹣1
    ﹣1
    1
    厂家
    超过标准质量的部分

    ﹣3
    0
    0
    1
    2
    0

    ﹣2
    1
    ﹣1
    0
    1
    1
    相关试卷

    固原市重点中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份固原市重点中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年铜川市重点中学数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年铜川市重点中学数学九年级第一学期开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年黔南市重点中学九年级数学第一学期开学复习检测试题【含答案】: 这是一份2024-2025学年黔南市重点中学九年级数学第一学期开学复习检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map