湖北省枣阳市太平一中学2024-2025学年数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于的一元二次方程有两个相等的实数根,则的值( )
A.2B.3C.D.
2、(4分)下列事件为必然事件的是( )
A.某运动员投篮时连续3次全中B.抛掷一块石块,石块终将下落
C.今天购买一张彩票,中大奖D.明天我市主城区最高气温为38℃
3、(4分)每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为 ( )
A.元B.元C.元D.元
4、(4分)已知(﹣5,y1),(﹣3,y2)是一次函数y=x+2图象上的两点,则y1与y2的关系是( )
A.y1<y2B.y1=y2C.y1>y2D.无法比较
5、(4分)将0.000008这个数用科学记数法表示为( )
A.8×10-6B.8×10-5C.0.8×10-5D.8×10-7
6、(4分)下列图形中是中心对称图形,但不是轴对称图形的是( ).
A.正方形B.菱形C.矩形D.平行四边形
7、(4分) “a是正数”用不等式表示为( )
A.a≤0 B.a≥0 C.a<0 D.a>0
8、(4分)下列式子:,,,,其中分式的数量有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点D是直线外一点,在上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是:_________________________
.
10、(4分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于_.
11、(4分)计算__.
12、(4分)如图,在平面直角坐标系中,已知顶点的坐标分别为,且是由旋转得到.若点在上,点在轴上,要使四边形为平行四边形,则满足条件的点的坐标为______.
13、(4分)如图,在中,点在上,请再添加一个适当的条件,使与相似,那么要添加的条件是__________.(只填一个即可)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.
15、(8分)求不等式(2x﹣1)(x+1)>0的解集.
解:根据“同号两数相乘,积为正”可得:①或 ②.
解①得x>;解②得x<﹣1.
∴不等式的解集为x>或x<﹣1.
请你仿照上述方法解决下列问题:
(1)求不等式(2x﹣1)(x+1)<0的解集.
(2)求不等式≥0的解集.
16、(8分)随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.
(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;
(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?
17、(10分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A′E′F′.
(1)求EF的长;
(2)设P,P′分别是EF,E′F′的中点,当点A′与点B重合时,求证四边形PP′CD是平行四边形,并求出四边形PP′CD的面积.
18、(10分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.
(1)求反比例函数的解析式;
(2)若点P在x轴上,且的面积为5,求点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)2016年5月某日,重庆部分区县的最高温度如下表所示:
则这组数据的中位数是__________.
20、(4分)实数a、b在数轴上的位置如图所示,化简=_____.
21、(4分)最简二次根式与是同类二次根式,则=________.
22、(4分)为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量与燃烧时间(分钟)成正比例;烧灼后,与成反比例(如图所示).现测得药物分钟燃烧完,此时教室内每立方米空气含药量为.研究表明当每立方米空气中含药量低于时,对人体方能无毒作用,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室.
23、(4分)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图:在中,平分,且,于点,于点.
(1)求证:;
(2)若,,求的长.
25、(10分)自中央出台“厉行节约、反对浪费”八项规定后,某品牌高档酒销量锐减,进入四月份后,经销商为扩大销量,每瓶酒比三月份降价500元,如果卖出相同数量的高档酒,三月份销售额为4.5万元,四月份销售额只有3万元.
(1)求三月份每瓶高档酒售价为多少元?
(2)为了提高利润,该经销商计划五月份购进部分大众化的中低档酒销售.已知高档酒每瓶进价为800元,中低档酒每瓶进价为400元.现用不超过5.5万元的预算资金购进,两种酒共100瓶,且高档酒至少购进35瓶,请计算说明有几种进货方案?
(3)该商场计划五月对高档酒进行促销活动,决定在四月售价基础上每售出一瓶高档酒再送顾客价值元的代金券,而中低档酒销售价为550元/瓶.要使(2)中所有方案获利恰好相同,请确定的值,并说明此时哪种方案对经销商更有利?
26、(12分)已知,如图,,求证:.
证明:∵
∴________________( )
∴________________( )
又∵
∴________________( )
∴( )
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由方程有两个相等的实数根,可得出关于m的一元一次方程,解之即可得出结论.
【详解】
∵方程有两个相等的实数根,
∴,
解得:m=1.
故选:A.
本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
2、B
【解析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件.
【详解】
解:A、某运动员投篮时连续3次全中,是随机事件;
B、抛掷一块石块,石块终将下落,是必然事件;
C、今天购买一张彩票,中大奖,是随机事件;
D、明天我市主城区最高气温为38℃,是随机事件;
故选择:B.
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
3、B
【解析】
解:由题意可得杂拌糖总价为mx+ny,总重为x+y千克,那么杂拌糖每千克的价格为元.故选B.
4、C
【解析】
k=-<0,k<0时,y将随x的增大而减小.
【详解】
解:
∵k=-<0,
∴y将随x的增大而减小.
∵-5<-3,
∴y1>y1.
故选C.
本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
5、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.
【详解】
0.000008用科学计数法表示为8×10-6 ,
故选A.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6、D
【解析】
试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.
正方形、菱形、矩形均既是轴对称图形又是中心对称图形,平行四边形只是中心对称图形,
故选D.
考点:本题考查的是中心对称图形与轴对称图形
点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
7、D
【解析】
正数即“>0”可得答案.
【详解】
“a是正数”用不等式表示为a>0,
故选D.
本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.
8、B
【解析】
根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.
【详解】
解:,是分式,共2个,
故选:B.
此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、两组对边分别相等的四边形是平行四边形.
【解析】
先根据分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,得出AB=DC,AD=BC,根据“两组对边分别相等的四边形是平行四边形”可判断四边形ABCD是平行四边形.
【详解】
解:根据尺规作图的作法可得,AB=DC,AD=BC,
∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)
故答案为两组对边分别相等的四边形是平行四边形.
本题主要考查了平行四边形的判定,解题时注意:两组对边分别相等的四边形是平行四边形.符号语言为:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.
10、1
【解析】
由题中条件可得Rt△ACD≌Rt△AED,进而得出AC=AE,然后把△BDE的边长通过等量转化即可得出结论.
【详解】
解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,
∴CD=DE.
又∵AD=AD,
∴Rt△ACD≌Rt△AED,
∴AC=AE.
又∵AC=BC,
∴BC=AE,
∴△DBE的周长为:DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.
故答案为:1.
本题主要考查了角平分线的性质以及全等三角形的判定及性质,能够掌握并熟练运用.
11、
【解析】
通过原式约分即可得到结果.
【详解】
解:原式=,
故答案为:.
此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.
12、 (−1.5,2)或(−3.5,−2)或(−0.5,4).
【解析】
要使以为顶点的四边形是平行四边形,则PQ=AC=2,在直线AB上到x轴的距离等于2 的点,就是P点,因此令y=2或−2求得x的值即可.
【详解】
∵点Q在x轴上,点P在直线AB上,以为顶点的四边形是平行四边形,
当AC为平行四边形的边时,
∴PQ=AC=2,
∵P点在直线y=2x+5上,
∴令y=2时,2x+5=2,解得x=−1.5,
令y=−2时,2x+5=−2,解得x=−3.5,
当AC为平行四边形的对角线时,
∵AC的中点坐标为(3,2),
∴P的纵坐标为4,
代入y=2x+5得,4=2x+5,
解得x=−0.5,
∴P(−0.5,4),
故P为(−1.5,2)或(−3.5,−2)或(−0.5,4).
故答案为:(−1.5,2)或(−3.5,−2)或(−0.5,4).
此题考查坐标与图形变化-旋转,解题关键在于掌握性质的性质
13、或
【解析】
已知与的公共角相等,根据两角对应相等的两个三角形相似再添加一组对应角相等即可.
【详解】
解:(公共角)
(或)
(两角对应相等的两个三角形相似)
故答案为:或
本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析
(2)详见解析
(3)1
【解析】
(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可.
(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证.
(3)根据(2)的结论解答:与(2)同理可得:∠DPE=∠ABC=1°.
【详解】
解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
∵在△BCP和△DCP中,,
∴△BCP≌△DCP(SAS).
(2)证明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP.
∵PE=PB,∴∠CBP=∠E.∴∠CDP=∠E.
∵∠1=∠2(对顶角相等),
∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,
即∠DPE=∠DCE.
∵AB∥CD,
∴∠DCE=∠ABC.
∴∠DPE=∠ABC.
(3)解:在菱形ABCD中,BC=DC,∠BCP=∠DCP,
在△BCP和△DCP中,
∴△BCP≌△DCP(SAS),
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∴∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC=1°,
故答案为:1.
15、(1)﹣1<x<;(2)x≥1或x<﹣2.
【解析】
(1)、(2)根据题意得出关于x的不等式组,求出x的取值范围即可.
【详解】
解:(1)根据“异号两数相乘,积为负”可得①或②,
解①得不等式组无解;解②得,﹣1<x<;
(2)根据“同号两数相除,积为正”可得①,②,
解①得,x≥1,解②得,x<﹣2,
故不等式组的解集为:x≥1或x<﹣2.
故答案为(1)﹣1<x<;(2)x≥1或x<﹣2.
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
16、 (1) y=0.8x+50;(2)见解析.
【解析】
分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;
(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.
详解:(1)普通会员购买商品应付的金额y(元) 与所购商品x(元)之间的函数关系式为:
当0<x≤300时,y=x+30;
当x>300时,y=0.9x;
VIP会员购买商品应付的金额y(元) 与所购商品x(元)之间的函数关系式为:
y=0.8x+50;
(2)当0.9x<0.8x+50时,
解得:x<500;
当0.9x=0.8x+50时,x=500;
当0.9x>0.8x+50时,x>500;
∴当购买的商品金额300<x<500时,按普通会员购买合算;
当购买的商品金额x>500时,按VIP会员购买合算;
当购买商品金额x=500时,两种方式购买一样合算.
点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,
分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.
17、(1)2;(2)28.
【解析】
(1)首先求出AF的长度,再在直角三角形AEF中求出EF的长度;
(2)连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH的长,最后根据面积公式求出答案.
【详解】
(1)∵四边形ABCD是菱形,
∴AD=AB=8,
∵F是AB的中点,
∴AF=AB=×8=4,
∵点F作FE⊥AD,∠A=60°,
∴∠AFE=30°,
∴AE=,
∴EF=2;
(2)如图,连接BD,DF,DF交PP′于H.
由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,
∴四边形PP′CD是平行四边形,
∵四边形ABCD是菱形,∠A=60°,
∴△ABD是等边三角形,
∵AF=FB,
∴DF⊥AB,DF⊥PP′,
在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,
∴AE=2,EF=2,
∴PE=PF=,
在Rt△PHF中,∵∠FPH=30°,PF=,
∴HF=PF=,
∵DF==4,
∴DH=4﹣=,
∴平行四边形PP′CD的面积=×8=28.
本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.
18、(1) (2)P的坐标为或
【解析】
(1)利用点A在上求a,进而代入反比例函数求k即可;
(2)设,求得C点的坐标,则,然后根据三角形面积公式列出方程,解方程即可.
【详解】
(1)把点代入,得,
∴
把代入反比例函数,
∴;
∴反比例函数的表达式为;
(2)∵一次函数的图象与x轴交于点C,
∴,
设,
∴,
∴,
∴或,
∴P的坐标为或.
本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、27℃
【解析】
根据中位数的求解方法,先排列顺序,再求解.
【详解】
解:将这组数据按从小到大的顺序排列:24,25,26,26,28,28,29,29,
此组数据的个数是偶数个,所以这组数据的中位数是(26+28)÷2=27,
故答案为27℃.
本题考查了中位数的意义.先把数据按由小到大顺序排序:若数据个数为偶数,则取中间两数的平均数;若数据个数为奇数,则取中间的一个数.
20、-b
【解析】
根据数轴判断出、的正负情况,然后根据绝对值的性质以及二次根式的性质解答即可.
【详解】
由图可知,,,
所以,,
.
故答案为-b
本题考查了实数与数轴,绝对值的性质以及二次根式的性质,根据数轴判断出、的正负情况是解题的关键.
21、21
【解析】
根据二次根式及同类二次根式的定义列出方程组即可求出答案.
【详解】
∵最简二次根式与是同类二次根式,
∴ ,
解得,,
∴
故答案为21.
22、1
【解析】
先求得反比例函数的解析式,然后把代入反比例函数解析式,求出相应的即可;
【详解】
解:设药物燃烧后与之间的解析式,把点代入得,解得,
关于的函数式为:;
当时,由;得,所以1分钟后学生才可进入教室;
故答案为:1.
本题考查了一次函数与反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
23、y=100t-500(15<t≤23)
【解析】
分析:
由题意可知,李明骑车的速度为100米/分钟,由此可知他从家到学校共用去了23分钟,其中自行车出故障前行驶了10分钟,自行车修好后行驶了8分钟,由此可知当时,y与t的函数关系为:.
详解:
∵车修好后,李明用8分钟骑行了800米,且骑车过程是匀速行驶的,
∴李明整个上学过程中的骑车速度为:100米/分钟,
∴在自行车出故障前共用时:1000÷100=10(分钟),
∵修车用了5分钟,
∴当时,是指小明车修好后出发前往学校所用的时间,
∴由题意可得:(),
化简得:().
故答案为:().
点睛:“由题意得到李明骑车的速度为100米/分钟,求时,y与t间的函数关系是求自行车修好后到家的距离与行驶的时间间的函数关系”是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)
【解析】
(1)根据角平分线的性质得到DE=DF,证明Rt△BDE≌Rt△CDF,根据全等三角形的性质得到∠B=∠C,根据等腰三角形的判定定理证明;
(2)根据直角三角形的性质求出AC,根据勾股定理计算即可.
【详解】
(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
在Rt△BDE和Rt△CDF中, ,
∴Rt△BDE≌Rt△CDF,
∴∠B=∠C,
∴AB=AC;
(2)∵AD平分∠BAC,BD=CD,
∴AD⊥BC,
∵∠DAC=30°,
∴AC=2DC=8,
∴AD=.
本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
25、(1)三月份每瓶高档酒售价为1500元;(2)有三种进货方案,分别为:①购进种酒35瓶,种酒65瓶,②购进种酒36瓶,种酒64瓶,③购进种酒37瓶,种酒63瓶;(3),种酒越少,所用进货款就越少,在利润相同的情况下,选择方案①对经销商更有利.
【解析】
(1)设三月份每瓶高档酒A售价为x元,然后根据三、四月卖出相同数量列出方程,求解即可;
(2)设购进A种酒y瓶,表示出B种酒为(100-y)瓶,再根据预算资金列出不等式组,然后求出y的取值范围,再根据y是正整数设计方案;
(3)设购进A种酒y瓶时利润为w元,然后列式整理得到获利表达式,再根据所有方案获利相等列式计算即可得解.
【详解】
解:(1)设三月份每瓶高档酒售价为元,
由题意得,
解得,
经检验,是原方程的解,且符合题意,
答:三月份每瓶高档酒售价为1500元;
(2)设购进种酒瓶,则购进种酒为(100-y)瓶,
由题意得,
解得,
∵为正整数,
∴、、,
∴有三种进货方案,分别为:
①购进种酒35瓶,种酒65瓶,
②购进种酒36瓶,种酒64瓶,
③购进种酒37瓶,种酒63瓶;
(3)设购进种酒瓶时利润为元,
则四月份每瓶高档酒售价为元,
,
,
∵(2)中所有方案获利恰好相同
∴,
解得.
∵
∴种酒越少,所用进货款就越少,在利润相同的情况下,选择方案①对经销商更有利.
此题考查二元一次方程组的应用,一元一次不等式组的应用,解题关键在于列出方程
26、DE∥AC;内错角相等,两直线平行;;两直线平行,内错角相等 ;;两直线平行,同位角相等.
【解析】
根据平行线的性质和判定,还有等量代换可得.
【详解】
证明:∵
∴___DE∥AC_____( 内错角相等,两直线平行 )
∴________________( 两直线平行,内错角相等 )
又∵
∴________________( 两直线平行,同位角相等)
∴(等量代换)
考核知识点:平行线的判定和性质.理解好判定和性质是关键.
题号
一
二
三
四
五
总分
得分
地区
合川
永川
江津
涪陵
丰都
梁平
云阳
黔江
温度(℃)
25
26
29
26
24
28
28
29
湖北省枣阳市太平三中学2025届九上数学开学综合测试试题【含答案】: 这是一份湖北省枣阳市太平三中学2025届九上数学开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省枣阳市钱岗中学2024-2025学年数学九上开学考试模拟试题【含答案】: 这是一份湖北省枣阳市钱岗中学2024-2025学年数学九上开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省襄阳市枣阳市太平三中学数学九年级第一学期开学质量检测试题【含答案】: 这是一份2024年湖北省襄阳市枣阳市太平三中学数学九年级第一学期开学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。