湖北省枣阳市兴隆一中学2025届九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一次函数的图象交轴于点,则不等式的解集为( )
A.B.C.D.
2、(4分)已知:如图,菱形 ABCD 对角线 AC 与 BD 相交于点 O,E 为 BC 的中点,AD=6cm,则 OE 的长为( )
A.6cmB.4cmC.3cmD.2cm
3、(4分)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是( )
A.1B.﹣1C.0D.无法确定
4、(4分)如图,数轴上的点A所表示的数是( )
A.B.C.D.
5、(4分)如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为( )
A.24
B.
C.
D.5
6、(4分)以下列各组数为边长首尾相连,能构成直角三角形的一组是( )
A.4,5,6B.1,,2C.5,12,15D.6,8,14
7、(4分)一次函数的图象经过( )
A.一、二、三象限B.一、二、四象限
C.二、三、四象限D.一、三、四象限
8、(4分)下列二次根式中,可与合并的二次根式是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,对角线与相交于点,是边的中点,连结.若,,则的度数为_______.
10、(4分)如图,在五边形中,,和的平分线交于点,则的度数为__________°.
11、(4分)已知某汽车油箱中的剩余油量(升)是该汽车行驶时间(小时)的一次函数,其关系如下表:
由此可知,汽车行驶了__________小时, 油箱中的剩余油量为升.
12、(4分)计算:的结果是________.
13、(4分)一张矩形纸片ABCD,已知,.小明按所给图步骤折叠纸片,则线段DG长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简÷,然后从1、2、3中选取一个你认为合适的数作为a的值代入求值.
15、(8分)如图,在梯形ABCD中,AD∥BC,AB=CD,BC=10,对角线AC、BD相交于点O,且AC⊥BD,设AD=x,△AOB的面积为y.
(1)求∠DBC的度数;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)如图1,设点P、Q分别是边BC、AB的中点,分别联结OP,OQ,PQ.如果△OPQ是等腰三角形,求AD的长.
16、(8分)某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利减少库存,商场决定采取适当的降价措施,经调查发现,如果每件降价1元,则每天可多售2件.
(1)商场若想每天盈利1200元,每件衬衫应降价多少元?
(2)问在这次活动中,平均每天能否获得1300元的利润,若能,求出每件衬衫应降多少元;若不能,请说明理由.
17、(10分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).
(1)求k的值;
(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.
(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.
18、(10分)小红同学经常要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉开5m后,发现这时绳子的下端正好距地面1m,学校旗杆的高度是( )
A.21mB.13mC.10mD.8m
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为_________
20、(4分)已知,则的值为_____.
21、(4分)已知长方形的面积为6m2+60m+150(m>0),长与宽的比为3:2,则这个长方形的周长为_____.
22、(4分)甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)
23、(4分)对于任意非零实数a,b,定义“☆”运算为:a☆b=,若(x+1)☆x+(x+2)☆(x+1)+(x+3)☆(x+2)+…+(x+2018)☆(x+2017)=,则x=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,点是边长为的正方形对角线上一个动点(与不重合),以为圆心,长为半径画圆弧,交线段于点,联结,与交于点.设的长为,的面积为.
(1)判断的形状,并说明理由;
(2)求与之间的函数关系式,并写出定义域;
(3)当四边形是梯形时,求出的值.
25、(10分)如图,四边形ABCD是平行四边形,分别以AB,CD为边向外作等边△ABE和△CDF,连接AF,CE.求证:四边形AECF为平行四边形.
26、(12分)关于x的一元二次方程有两个不等实根,.
(1)求实数k的取值范围;
(2)若方程两实根,满足,求k的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
观察函数图象,找出在x轴上方的函数图象所对应的x的取值,由此即可得出结论.
【详解】
解:观察函数图象,发现:
当时,一次函数图象在x轴上方,
不等式的解集为.
故选:C.
本题考查了一次函数与一元一次不等式,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.
2、C
【解析】
根据菱形的性质,各边长都相等,对角线垂直平分,可得点O是AC的中点,证明EO为三角形ABC的中位线,计算可得.
【详解】
解:∵四边形是菱形,
∴,,
∵为的中点,
∴是的中位线,
∴,
故选:C.
本题考查了菱形的性质,三角形中位线的性质,熟练掌握几何图形的性质是解题关键.
3、B
【解析】
解:根据题意得:(m﹣1)+1+1=0,
解得:m=﹣1.
故选B
4、A
【解析】
由题意,利用勾股定理求出点A到−1的距离,即可确定出点A表示的数.
【详解】
根据题意得:数轴上的点A所表示的数为−1=,
故选:A.
此题考查了实数与数轴,弄清点A表示的数的意义是解本题的关键.
5、C
【解析】
连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.
【详解】
解:连接PC,
∵PE⊥AC,PF⊥BC,
∴∠PEC=∠PFC=∠C=90°,
∴四边形ECFP是矩形,
∴EF=PC,
∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=1,BC=6,
∴AB=10,
∴PC的最小值为:=4.1.
∴线段EF长的最小值为4.1.
故选C.
本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.
6、B
【解析】
如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
【详解】
解:A、,可知其不能构成直角三角形;
B、,可知其能构成直角三角形;
C、,可知其不能构成直角三角形;
D、,可知其不能构成直角三角形;
故选择:B.
本题主要考查了勾股定理的逆定理的运用,解题时注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
7、D
【解析】
根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.
【详解】
解:∵一次函数中k=2>0,b=-4<0,
∴此函数的图象经过一、三、四象限.
故选:D.
本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.
8、A
【解析】
根据最简二次根式的定义,对每一个选项进行化简即可.
【详解】
A、,与是同类二次根式,可以合并,该选项正确;
B、,与不是同类二次根式,不可以合并,该选项错误;
C、与不是同类二次根式,不可以合并,该选项错误;
D、,与不是同类二次根式,不可以合并,该选项错误;
故选择:A.
本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、40°
【解析】
直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.
【详解】
解:,,
,
对角线与相交于点,是边的中点,
是的中位线,
,
.
故答案为:.
此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出是的中位线是解题关键.
10、
【解析】
先根据五边形的内角和公式及求出∠ABC+∠BCD的度数,再利用角平分线的定义求出∠OBC+∠OCB的值,然后利用三角形内角和公式即可求出∠BOC的值.
【详解】
∵,
∴∠ABC+∠BCD=540°-330°=210°.
∵和的平分线交于点,
∴∠OBC+∠OCB=(∠ABC+∠BCD)=×210°=105°,
∴∠BOC=180°-105°=75°.
故答案为:75.
本题考查了多边形的内角和公式,角平分线的定义,熟练掌握多边形的内角和公式(n-2) ×180°是解答本题的关键.
11、11.5
【解析】
根据剩余油量(升)、汽车行驶时间(小时),可求出每千米用油量,根据题意可写出函数式.
【详解】
根据题意得每小时的用油量为,
∴剩余油量(升)与汽车行驶时间(小时)的函数关系式:,
当y=8时,x=11.5.
故答案为:11.5.
此题考查一次函数,解题关键在于结合实际列出一次函数关系式求解即可.
12、4
【解析】
按照二次根式的乘、除运算法则运算即可求解.
【详解】
解:原式=
故答案为:4.
本题考查二次根式的乘除运算法则,熟练掌握运算公式是解决此类题的关键.
13、
【解析】
首先证明△DEA′是等腰直角三角形,求出DE,再说明DG=GE即可解决问题.
【详解】
解:由翻折可知:DA′=A′E=4,
∵∠DA′E=90°,
∴DE=,
∵A′C′=2=DC′,C′G∥A′E,
∴DG=GE=,
故答案为:.
本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
三、解答题(本大题共5个小题,共48分)
14、, 1.
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=×=×=
要使原分式有意义,故a=3,∴当a=3 时,原式=1.
15、(1)∠DBC=45;(2)y=x(x>0);(3)满足条件的AD的值为1﹣1.
【解析】
(1)过点D作AC的平行线DE,与BC的延长线交于E点,只要证明△BDE是等腰直角三角形即可解决问题;
(2)由(1)可知:△BOC,△AOD都是等腰直角三角形,由题意OA=x,OB=5,根据y=•OA•OB计算即可;
(3)分三种情形讨论即可解决问题;
【详解】
(1)过点D作AC的平行线DE,与BC的延长线交于E点.
∵梯形ABCD中,AD∥BC,AC∥DE,
∴四边形ACED为平行四边形,AC=DE,AD=CE,
∵AB=CD,
∴梯形ABCD为等腰梯形,
∴AC=BD,
∴BD=DE,
又AC⊥BD,
∴∠BOC=90°
∵AC∥DE
∴∠BDE=90°,
∴△BDE是等腰直角三角形,
∴∠DBC=45°.
(2)由(1)可知:△BOC,△AOD都是等腰直角三角形,
∵AD=x,BC=1,
∴OA=x,OB=5,
∴y=.
(3)如图2中,
①当PQ=PO=BC=5时,
∵AQ=QB,BP=PC=5,
∴PQ∥AC,PQ=AC,
∴AC=1,∵OC=5,
∴OA=1﹣5,
∴AD=OA=1﹣1.
②当OQ=OP=5时,AB=2OQ=1,此时AB=BC,∠BAC=∠BCA=45°,
∴∠ABC=90°,同理可证:∠DCB=90°,
∴四边形ABCD是矩形,不符合题意,此种情形不存在.
③当OQ=PQ时,AB=2OQ,AC=2PQ,
∴AB=AC,
∴∠ABC=∠ACB=45°,
∴∠BAC=90°=∠BOC,显然不可能,
综上所述,满足条件的AD的值为1﹣1.
本题考查四边形综合题、梯形、等腰直角三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,学会用分类讨论的思想思考问题.
16、(1)若商场平均每天要盈利1200元,每件衬衫应降价20元(2)不能.
【解析】
(1)设每件衬衫应降价x元,则每件盈利(40﹣x)元,每天可以售出(20+2x),所以此时商场平均每天要盈利(40﹣x)(20+2x)元,根据商场平均每天要盈利=1200元,为等量关系列出方程求解即可.
(2)假设能达到,根据商场平均每天要盈利=1300元,为等量关系列出方程,看该方程是否有解,有解则说明能达到,否则不能.
【详解】
解:(1)设每件衬衫应降价x元,则每件盈利(40﹣x)元,每天可以售出(20+2x),
由题意,得(40﹣x)(20+2x)=1200,
即:(x﹣10)(x﹣20)=0,
解得x1=10,x2=20,
为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
所以,若商场平均每天要盈利1200元,每件衬衫应降价20元;
(2)假设能达到,由题意,得(40﹣x)(20+2x)=1300,
整理,得x2﹣30x+250=0,
△=302﹣4×1×250=-100<0,
∴原方程无解,
∴平均每天不能获得1300元的利润.
本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系列出方程求解,另外还用到的知识点是“根的判别式”的应用.
17、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.
【解析】
(1)将点E坐标(﹣8,0)代入直线y=kx+6就可以求出k值,从而求出直线的解析式;
(2)由点A的坐标为(﹣6,0)可以求出OA=6,求△OPA的面积时,可看作以OA为底边,高是P点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出△OPA.从而求出其关系式;根据P点的移动范围就可以求出x的取值范围.
(3)分点P在x轴上方与下方两种情况分别求解即可得.
【详解】
(1)∵直线y=kx+6过点E(﹣8,0),
∴0=﹣8k+6,
k=;
(2)∵点A的坐标为(﹣6,0),
∴OA=6,
∵点P(x,y)是第二象限内的直线上的一个动点,
∴△OPA的面积S=×6×(x+6)=x+18 (﹣8<x<0);
(3)设点P的坐标为(m,n),则有S△AOP=,
即,
解得:n=±,
当n=时,=x+6,解得x=,
此时点P在x轴上方,其坐标为(,);
当n=-时,-=x+6,解得x=,
此时点P在x轴下方,其坐标为(,),
综上,点P坐标为:(,)或(,).
本题考查了待定系数法、三角形的面积、点坐标的求法,熟练掌握待定系数法、正确找出各量间的关系列出函数解析式,分情况进行讨论是解题的关键.
18、B
【解析】
根据题意设旗杆的高AB为x米,则绳子AC的长为x米,在Rt△ACH利用勾股定理构建方程即可解决问题.
【详解】
如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=BH=1米,CH=5米,设AB=AC=x米.
在Rt△ACH中,∵AC2=AH2+CH2,
∴x2=52+(x-1)2,
∴x=13,
∴AB=13(米),
故选B.
此题考查了勾股定理在实际问题中的应用,能够正确理解题意继而构造直角三角形是解决本题的关键,难度一般.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=-2x+1
【解析】
试题分析:由题意得:平移后的解析式为:y=﹣2x+1+2=﹣2x+1.
故答案是y=﹣2x+1.
考点:一次函数图象与几何变换.
20、
【解析】
根据二次根式有意义的条件:被开方数是非负数,即可求得x的值,进而求得y的值,然后代入求解即可.
【详解】
解:根据题意得:,解得:,
∴,
∴,
故答案为.
考查了二次根式的意义和性质.概念:式子(a≥1)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为1,这几个非负数都为1.
21、10m+1
【解析】
对面积表达式进行变形,根据面积=长×宽,再根据长与宽的比是3:2,判断出长宽的表达式,继而得出周长.
【详解】
解:∵6m2+60m+11=6(m2+10m+25)=6(m+5)2=[3(m+5)][2(m+5)],
且长:宽=3:2,
∴长为3(m+5),宽为2(m+5),
∴周长为:2[3(m+5)+2(m+5)]=10m+1.
故答案为:10m+1
本题考查了用提取公因式和完全平方公式进行因式分解的实际应用,熟练掌握并准确分析是解题的关键.
22、乙.
【解析】
根据气温统计图可知:乙的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小.
【详解】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案是:乙.
考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
23、﹣1
【解析】
已知等式左边利用题中的新定义化简,再利用拆项法变形,整理后即可求出解.
【详解】
解:已知等式利用题中的新定义化简得:
+…+=,
整理得:()=,
合并得:()=,即=0,
去分母得:x+2018+x=0,
解得:x=﹣1,
经检验x=﹣1是分式方程的解,
则x=﹣1.
故答案为:﹣1.
本题考查了分式的混合运算,属于新定义题型,将所求的式子变形之后利用进行拆项是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)为等腰直角三角形,理由见解析;(2)y=;(3)
【解析】
(1)先证明,再证明四边形是矩形,再证明,可得,即可得为等腰直角三角形.
(2)由,,即可求得与之间的函数关系式.
(3)因为四边形是梯形时,得.求PF的长,需利用已知条件求AC,AP,CE的长,则即可得出答案.
【详解】
解:(1) 为等腰直角三角形,理由如下:
在正方形中,,
又,
由题意可得,,
过点作,与分别交于点,
在正方形中,
四边形是矩形,
在中,
又
为等腰直角三角形
(2)在中,,
在中,
为等腰直角三角形,
(3)在等腰直角三角形中,
,
当四边形是梯形时,只有可能,
此题考查全等三角形的判定与性质,函数表达式的求解,梯形的性质,解题关键在于综合运用考点,利用图形与函数的结合求解即可.
25、见解析.
【解析】
由平行四边形的性质可得AB=CD,AD=BC,∠ABC=∠ADC,由等边三角形的性质可得BE=EA=AB=CD=CF=DF,∠EBA=∠CDF=60°,由“SAS”可证△ADF≌△CBE,可得EC=AF,由两组对边相等的四边形是平行四边形可证四边形AECF为平行四边形.
【详解】
∵四边形ABCD是平行四边形
∴AB=CD,AD=BC,∠ABC=∠ADC
∵△ABE和△CDF是等边三角形
∴BE=EA=AB=CD=CF=DF,∠EBA=∠CDF=60°
∴∠ADF=∠EBC,且AD=BC,BE=DF
∴△ADF≌△CBE(SAS)
∴EC=AF,且AE=CF
∴四边形AECF为平行四边形.
本题考查了平行四边形的判定和性质,等边三角形的性质,全等三角形的判定和性质,熟练运用平行四边形的判定和性质是本题的关键.
26、 (1) k<;(2) k=1.
【解析】
(1)根据一元二次方程的根的判别式得出△>1,求出不等式的解集即可;
(2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1•x2=k2,代入x1+x2+x1x2-1=1,即可求出k值.
【详解】
解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=1有两个不等实根x1,x2,
∴△=(2k-1)2-4×1×k2=-4k+1>1,
解得:k<,
即实数k的取值范围是k<;
(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1•x2=k2,
∵x1+x2+x1x2-1=1,
∴1-2k+k2-1=1,
∴k2-2k=1
∴k=1或2,
∵由(1)知当k=2方程没有实数根,
∴k=2不合题意,舍去,
∴k=1.
本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.
题号
一
二
三
四
五
总分
得分
批阅人
(小时)
…
(升)
…
湖北省云梦县2024年数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份湖北省云梦县2024年数学九上开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省襄樊市名校2025届九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份湖北省襄樊市名校2025届九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖北省黄石市河口中学九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2025届湖北省黄石市河口中学九上数学开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。