|试卷下载
终身会员
搜索
    上传资料 赚现金
    湖北省孝感市孝南区八校2025届九上数学开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    湖北省孝感市孝南区八校2025届九上数学开学教学质量检测试题【含答案】01
    湖北省孝感市孝南区八校2025届九上数学开学教学质量检测试题【含答案】02
    湖北省孝感市孝南区八校2025届九上数学开学教学质量检测试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省孝感市孝南区八校2025届九上数学开学教学质量检测试题【含答案】

    展开
    这是一份湖北省孝感市孝南区八校2025届九上数学开学教学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若点是正比例函数图象上任意一点,则下列等式一定成立的是( )
    A.B.C.D.
    2、(4分)若式子的值等于0,则x的值为( )
    A.±2B.-2C.2D.-4
    3、(4分)方程的根是
    A.B.C.,D.,
    4、(4分)下列函数解析式中不是一次函数的是( )
    A.B.C.D.
    5、(4分)体育课上,某班三名同学分别进行了6次短跑训练,要判断哪一名同学的短跑成绩比较稳定,通常需要比较三名同学短跑成绩的 ( )
    A.平均数B.频数C.方差D.中位数
    6、(4分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )
    A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形
    7、(4分)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:
    则该二次函数图象的对称轴为( )
    A.y轴B.直线x=C.直线x=1D.直线x=
    8、(4分)如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为( )
    A.B.-C.1D.﹣1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算:(2+)(2-)=_______.
    10、(4分)若关于的一元二次方程有一个根为 ,则________.
    11、(4分)如图,正比例函数和一次函数的图像相交于点A(2,1).当x>2时,_____________________.(填“>”或“<”)
    12、(4分)分解因式:________.
    13、(4分)分解因式xy2+4xy+4x=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某商场销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利减少库存,商场决定采取适当的降价措施,经调查发现,如果每件降价1元,则每天可多售2件.
    (1)商场若想每天盈利1200元,每件衬衫应降价多少元?
    (2)问在这次活动中,平均每天能否获得1300元的利润,若能,求出每件衬衫应降多少元;若不能,请说明理由.
    15、(8分)在▱ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F.
    (1)如图①,证明:BE=BF.
    (2)如图②,若∠ADC=90°,O为AC的中点,G为EF的中点,试探究OG与AC的位置关系,并说明理由.
    (3)如图③,若∠ADC=60°,过点E作DC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EK=BF,连接CK,H为CK的中点,试探究线段OH与HA之间的数量关系,并对结论给予证明.
    16、(8分)某公司销售人员15人,销售经理为了制定某种商品的月销售定额,统计了这15人某月的销售量如表所示:
    (1)这15位营销人员该月销售量的中位数是______,众数是______;
    (2)假设销售部负责人把每位销售人员的月销售额定为210件,你认为是否合理?如不合理,请你制定一个较为合理的销售定额,并说明理由.
    17、(10分)如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.
    (1)如图,当点E在线段BC上时,∠BDF=α.
    ①按要求补全图形;
    ②∠EBF=______________(用含α的式子表示);
    ③判断线段 BF,CF,DF之间的数量关系,并证明.
    (2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.
    18、(10分)如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE与DC交于点O.

    (基础探究)
    (1)求证:PD=PE.
    (2)求证:∠DPE=90°
    (3)(应用拓展)把正方形ABCD改为菱形,其他条件不变(如图),若PE=3,则PD=________;
    若∠ABC=62°,则∠DPE=________.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,已知,则_______.
    20、(4分)平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.
    21、(4分)如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.
    22、(4分)如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l∥BC,则∠1=______.
    23、(4分)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打七折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的函数关系如图所示,那么图中a的值是_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.
    (1)共需租多少辆客车?
    (2)请给出最节省费用的租车方案.
    25、(10分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).
    ①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.
    已知:在四边形ABCD中,____________.
    求证:四边形ABCD是平行四边形.
    26、(12分)房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生 自主学习的能力.小华与小明同学就“最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:
    (1)这次抽样调查中,共调查了 名学生;
    (2)补全两幅统计图;
    (3)根据抽样调查的结果,估算该校 1000 名学生中大约有多少人选择“小组合作学习”?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.
    【详解】
    ∵点A(a,b)是正比例函数图象上的一点,
    ∴,
    ∴2a+3b=0.
    故选A
    本题考查函数图象上点的坐标与函数关系式的关系,等式的基本性质,能根据等式的基本性质进行适当变形是解决本题的关键.
    2、C
    【解析】
    =0且x²+4x+4≠0,
    解得x=2.
    故选C.
    3、C
    【解析】
    由题意推出x=0,或(x-1)=0,解方程即可求出x的值
    【详解】

    ,,
    故选.
    此题考查解一元二次方程-因式分解法,掌握运算法则是解题关键
    4、C
    【解析】
    根据一次函数的定义,可得答案.
    【详解】
    A、是一次函数,故A正确;
    B、是一次函数,故B正确;
    C、是二次函数,故C错误;
    D、是一次函数,故D正确;
    故选:C.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
    5、C
    【解析】
    根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生6次短跑训练成绩的方差.
    【详解】
    由于方差能反映数据的稳定性,需要比较这两名学生6次短跑训练成绩的方差.
    故选C.
    本题考查了方差,关键是掌握方差所表示的意义,属于基础题,比较简单.
    6、B
    【解析】
    依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.
    【详解】
    如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,
    ∴AC2+BC2=AB2,
    ∴△ABC是直角三角形,且∠ACB=90°,
    故选B.
    本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    7、D
    【解析】
    观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x= .故选D.
    8、B
    【解析】
    根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标.
    【详解】
    解:菱形OABC的顶点O(0,0),B(2,2),得
    D点坐标为,即(1,1).
    ∴OD=每秒旋转45°,则第2019秒时,得45°×2019,
    45°×2019÷360=252.375周,
    OD旋转了252又周,菱形的对角线交点D的坐标为(﹣ ,0),
    故选:B.
    考查菱形的性质及旋转的性质,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据实数的运算法则,利用平方差公式计算即可得答案.
    【详解】
    (2+)(2-)
    =22-()2
    =4-3
    =1.
    故答案为:1
    本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.
    10、4
    【解析】
    根据一元二次方程的解的定义,把x=0代入x2+mx+2m-4=0得到关于m的一次方程2m-4=0,然后解一次方程即可.
    【详解】
    把代入,
    得2m-4=0
    解得m=2
    本题考查一元二次方程的解,熟练掌握计算法则是解题关键.
    11、>
    【解析】
    根据图像即可判断.
    【详解】
    解: ∵点A(2,1)
    ∴x>2 在A点右侧,由图像可知:此时>.
    故答案为>
    此题考查的是比较一次函数的函数值,结合图像比较一次函数的函数值是解决此题的关键.
    12、 (a+1)(a-1)
    【解析】
    根据平方差公式分解即可.
    【详解】
    (a+1)(a-1).
    故答案为:(a+1)(a-1).
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    13、x(y+2)2
    【解析】
    原式先提取x,再利用完全平方公式分解即可。
    【详解】
    解:原式=,故答案为:x(y+2)2
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)若商场平均每天要盈利1200元,每件衬衫应降价20元(2)不能.
    【解析】
    (1)设每件衬衫应降价x元,则每件盈利(40﹣x)元,每天可以售出(20+2x),所以此时商场平均每天要盈利(40﹣x)(20+2x)元,根据商场平均每天要盈利=1200元,为等量关系列出方程求解即可.
    (2)假设能达到,根据商场平均每天要盈利=1300元,为等量关系列出方程,看该方程是否有解,有解则说明能达到,否则不能.
    【详解】
    解:(1)设每件衬衫应降价x元,则每件盈利(40﹣x)元,每天可以售出(20+2x),
    由题意,得(40﹣x)(20+2x)=1200,
    即:(x﹣10)(x﹣20)=0,
    解得x1=10,x2=20,
    为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
    所以,若商场平均每天要盈利1200元,每件衬衫应降价20元;
    (2)假设能达到,由题意,得(40﹣x)(20+2x)=1300,
    整理,得x2﹣30x+250=0,
    △=302﹣4×1×250=-100<0,
    ∴原方程无解,
    ∴平均每天不能获得1300元的利润.
    本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系列出方程求解,另外还用到的知识点是“根的判别式”的应用.
    15、(1)详见解析;(2)GO⊥AC;(3)AH=OH
    【解析】
    (1)根据平行线的性质得出∠E=∠ADF,∠EFB=∠EDC,再利用ED平分∠ADC,即可解答
    (2)连接BG,AG,根据题意得出四边形ABCD是矩形,再利用矩形的性质,证明△ABG≌△CEG,即可解答
    (3)连接AK,BK,FK,先得出四边形BFKE是菱形,,再利用菱形的性质证明△KBE,△KBF都是等边三角形,再利用等边三角形的性质得出△ABK≌△CEK,最后利用三角函数即可解答
    【详解】
    (1)证明:如图①中,因为四边形ABCD为平行四边形,
    所以,AD∥EC,AB∥CD,
    所以,∠E=∠ADF,∠EFB=∠EDC,
    因为ED平分∠ADC,
    所以,∠ADF=∠EDC,
    所以,∠E=∠EFB,
    所以,BE=BF
    (2)解:如图⊙中,结论:GO⊥AC
    连接BG,AG
    ∵四边形ABCD是平行四边形,∠ADC=90°,
    四边形ABCD是矩形,
    ∠ABC=∠ABE=90°,
    由(1)可知:BE=BF,
    ∵∠EBF=90°,EG=FG,
    ∴∠E=45°,∠GBF=∠GBE=45°,BG=GE=GF,
    ∵∠DCE=90°
    ∴∠E=∠EDC=45°,
    ∴DC=CE=BA,
    ∵∠ABG=∠E=45°,AB=EC,BG=EG,
    ∴△ABG≌△CEG(SAS),
    ∵GA=GC
    ∴AO=OC.
    ∴GO⊥AC
    (3)解:如图⊙中,连接AK,BK,FK
    ∵BF=EK,BF∥EK,
    ∴四边形BFKE是平行四边形,
    ∵BF=BE,
    ∴四边形BFKE是菱形,
    ∵边形ABCD是平行四边形,
    ∴∠ADC=∠ABC=60°,∠DCB=∠DAB=120°
    ∴∠EBF=120°,
    ∴∠KBE=∠KBF=60°
    BF=BE=FK=EK,
    ∴△KBE,△KBF都是等边三角形,
    ∴∠ABK=∠CEK=60°,∠FEB=∠FEK=30
    ∴∠CDE=∠CED=30°
    ∴CD=CE=BA,
    ∵BK=EK,
    ∴△ABK≌△CEK(SAS)
    ∴AK=CK,∠AKB=∠CKB
    ∴∠AKC=∠BKE=60°
    ∴△ACK是等边三角形
    ∵OA=OC,CH=HK
    ∴AK=2OH,AH⊥CK,
    ∴AH=AK·cs30°= AK
    ∴AH= OH.
    此题考查平行四边形的性质,矩形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,解题关键在于作辅助线
    16、(1)210,210;(2)合理,理由见解析
    【解析】
    (1)根据中位数和众数的定义求解;
    (2)先观察出能销售210件的人数为能达到大多数人的水平即合理.
    【详解】
    解:(1)按大小数序排列这组数据,第7个数为210,则中位数为210;
    210出现的次数最多,则众数为210;
    故答案为:210,210;
    (2)合理;
    因为销售210件的人数有5人,210是众数也是中位数,能代表大多数人的销售水平,所以售部负责人把每位销售人员的月销售额定为210件是合理的.
    本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    17、(1)①详见解析;②45°-α;③,详见解析;(2),或,或
    【解析】
    (1)①由题意补全图形即可;
    ②由正方形的性质得出,由三角形的外角性质得出,由直角三角形的性质得出即可;
    ③在DF上截取DM=BF,连接CM,证明△CDM≌△CBF,得出CM=CF, ∠DCM=∠BCF,得出MF=即可得出结论;
    (2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;
    ②当点E在线段BC的延长线上时,BF=DF+,在BF_上截取BM=DF,连接CM.同(1)③得△CBM≌△CDF得出CM=CF,∠BCM=∠DCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论;
    ③当点E在线段CB的延长线上时,BF+DF=,在DF上截取DM=BF,连接CM,同(1) ③得:ACDM≌△CBF得出CM=CF,∠DCM=∠BCF,证明△CMF是等腰直角三角形,得出MF=,即可得出结论.
    【详解】
    解:(1)①如图,
    ②∵四边形ABCD是正方形,
    ∴∠ABC=90°,,
    ∴,
    ∵BF⊥DE,
    ∴∠BFE=90°,
    ∴,
    故答案为:45°-α;
    ③线段BF,CF,DF之间的数量关系是.
    证明如下:在DF上截取DM=BF,连接CM.如图2所示,
    ∵ 正方形ABCD,
    ∴ BC=CD,∠BDC=∠DBC=45°,∠BCD=90°
    ∴∠CDM=∠CBF=45°-α,
    ∴△CDM≌△CBF(SAS).
    ∴ DM=BF, CM=CF,∠DCM=∠BCF.
    ∴ ∠MCF =∠BCF+∠MCE
    =∠DCM+∠MCE
    =∠BCD=90°,
    ∴ MF =.

    (2)分三种情况:①当点E在线段BC上时,DF=BF+,理由同(1)③;
    ②当点E在线段BC的延长线上时,BF=DF+,理由如下:
    在BF上截取BM=DF,连接CM,如图3所示,
    同(1) ③,得:△CBM≌△CDF (SAS),
    ∴CM=CF, ∠BCM=∠DCF.
    ∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD= ∠ BCD=90°,
    ∴△CMF是等腰直角三角形,
    ∴MF=,
    ∴BF=BM+MF=DF+;
    ③当点E在线段CB的延长线上时,BF+DF=;理由如下:
    在DF上截取DM=BF,连接CM,如图4所示,
    同(1)③得:△CDM≌△CBF,
    ∴CM=CF,∠DCM=∠BCF,
    ∴∠MCF=∠DCF+ ∠MCD= ∠DCF+∠BCF=∠BCD=90°,
    ∴△CMF是等腰直角三 角形,
    ∴MF=,
    即DM+DF=,
    ∴BF+DF=;
    综上所述,当点E在直线BC上时,线段BF,CF,DF之间的数导关系为:,或,或.
    此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.
    18、(1)证明见解析;(2)证明见解析;(3),.
    【解析】
    (1)由正方形的性质可得DC=BC,∠ACB=∠ACD,利用SAS证明△PBC≌△PDC,根据全等三角形的性质可得PD=PB,又因PE=PB,即可证得PD=PE;(2)类比(1)的方法证明△PBC≌△PDC,即可得∠PDC=∠PBC.再由PE=PB,根据等腰三角形的性质可得∠PBC=∠E,所以∠PDC=∠E.因为∠POD=∠COE,根据三角形的内角和定理可得∠DPO=∠OCE=90º;(3)类比(1)的方法证得PD=PE=3;类比(2)的方法证得∠DPE=∠DCE,由平行线的性质可得∠ABC=∠DCE=62°,由此可得∠DPE=62°.
    【详解】
    (1)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,
    在△PBC和△PDC中,
    ∵DC=BC,∠ACB=∠ACD(已证),CP=CP(公共边),
    ∴△PBC≌△PDC.
    ∴PD=PB.
    又∵PE=PB,
    ∴PD=PE;
    (2)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,
    在△PBC和△PDC中,
    ∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)
    ∴△PBC≌△PDC.
    ∴∠PDC=∠PBC.
    又∵PE=PB,∴∠PBC=∠E.
    ∴∠PDC=∠E.
    又∵∠POD=∠COE,
    ∴∠DPO=∠OCE=90º;
    (3)在菱形ABCD中,DC=BC,∠ACB=∠ACD,
    在△PBC和△PDC中,
    ∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)
    ∴△PBC≌△PDC.
    ∴∠PDC=∠PBC,PD=PB.
    又∵PE=PB,
    ∴∠PBC=∠E, PD=PE=3.
    ∴∠PDC=∠E.
    又∵∠POD=∠COE,
    ∴∠DPE=∠DCE;
    ∵AB∥CD,∠ABC=62°,
    ∴∠ABC=∠DCE=62°,
    ∴∠DPE=62°.
    故答案为:3,62°.
    本题考查了正方形的性质、全等三角形的判定与性质、菱形的性质、等边对等角的性质,熟练运用性质证得∠PDC=∠E是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据题意,先求出AD的长度,然后相似三角形的性质,得到,即可求出DE.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴;
    故答案为:.
    本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的性质进行解题.
    20、(1,1)或(,)或(1,1)
    【解析】
    分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论
    【详解】
    ∵点A的坐标为(1,0),
    ∴OA=1.
    分三种情况考虑,如图所示.
    ①当OP1=AP1时,∵∠AOP1=45°,
    ∴△AOP1为等腰直角三角形.
    又∵OA=1,
    ∴点P1的坐标为(1,1);
    ②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.
    ∵OP1=OA=1,
    ∴OB=BP1=,
    ∴点P1的坐标为(,);
    ③当AO=AP3时,△OAP3为等腰直角三角形.
    ∵OA=1,
    ∴AP3=OA=1,
    ∴点P3的坐标为(1,1).
    综上所述:点P的坐标为(1,1)或(,)或(1,1).
    故答案为:(1,1)或(,)或(1,1).
    本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.
    21、1
    【解析】
    根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴AO=OC,AD∥BC,
    ∴∠EAO=∠FCO,
    在△AOE和△COF中,

    ∴△AOE≌△COF,
    ∴OF=OE=1.5,CF=AE,
    根据平行四边形的对边相等,得
    CD=AB=4,AD=BC=5,
    故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.
    故答案为:1.
    本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.
    22、30°
    【解析】
    试题分析:根据旋转图形的性质可得:AB=AM,∠AMN=∠B=60°,∠ANM=∠C=30°,根据∠B=60°可得:△ABM为等边三角形,则∠NMC=60°,根据平行线的性质可得:∠1+∠ANM=∠NMC=60°,则∠1=60°-30°=30°.
    23、1.
    【解析】
    根据题意求出当x≥10时的函数解析式,当y=27时代入相应的函数解析式,可以求得相应的自变量a的值,本题得以解决.
    【详解】
    解:由题意得每本练习本的原价为:20÷10=2(元),
    当x≥10时,函数的解析式为y=0.7×2(x-10)+20=1.4x+6,
    当y=27时,1.4x+6=27,解得x=1,
    ∴a=1.
    故答案为:1.
    本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,根据关系式可以解答问题.
    二、解答题(本大题共3个小题,共30分)
    24、(1)客车总数为6;(1)租4辆甲种客车,1辆乙种客车费用少.
    【解析】
    分析:(1)由师生总数为140人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;
    (1)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为140人以及租车总费用不超过1300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x的值即可解决最值问题.
    详解:(1)∵(134+6)÷45=5(辆)…15(人),∴保证140名师生都有车坐,汽车总数不能小于6;
    ∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;
    综上可知:共需租6辆汽车.
    (1)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:

    解得:≤x≤1.
    ∵x为整数,∴x=1,或x=1.
    设租车的总费用为y元,则y=180x+400×(6﹣x)=﹣110x+1400.
    ∵﹣110<0,∴当x=1时,y取最小值,最小值为1160元.
    故租甲种客车4辆、乙种客车1辆时,所需费用最低,最低费用为1160元.
    点睛:本题考查了一次函数的应用、解一元一次不等式组以及一次函数的性质,解题的关键是:(1)根据数量关系确定租车数;(1)找出y关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数关系式(不等式或不等式组)是关键.
    25、已知:①③(或①④或②④或③④),证明见解析.
    【解析】
    试题分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.
    其中解法一是证明两组对角相等的四边形是平行四边形;
    解法二是证明两组对边平行的四边形是平行四边形;
    解法三是证明一组对边平行且相等的四边形是平行四边形;
    解法四是证明两组对角相等的四边形是平行四边形.
    试题解析:已知:①③,①④,②④,③④均可,其余均不可以.
    解法一:
    已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,
    求证:四边形ABCD是平行四边形.
    证明:∵AD∥BC,
    ∴∠A+∠B=180°,∠C+∠D=180°.
    ∵∠A=∠C,
    ∴∠B=∠D.
    ∴四边形ABCD是平行四边形.
    解法二:
    已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,
    求证:四边形ABCD是平行四边形.
    证明:∵∠B+∠C=180°,
    ∴AB∥CD,
    又∵AD∥BC,
    ∴四边形ABCD是平行四边形;
    解法三:
    已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,
    求证:四边形ABCD是平行四边形.
    证明:∵∠B+∠C=180°,
    ∴AB∥CD,
    又∵AB=CD,
    ∴四边形ABCD是平行四边形;
    解法四:
    已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,
    求证:四边形ABCD是平行四边形.
    证明:∵∠B+∠C=180°,
    ∴AB∥CD,
    ∴∠A+∠D=180°,
    又∵∠A=∠C,
    ∴∠B=∠D,
    ∴四边形ABCD是平行四边形.
    考点:平行四边形的判定.
    26、(1)500(2)见解析(3)300人
    【解析】
    (1)根据“个人自学后老师点拨”与所占的百分比进行计算即可得解.
    (2)求出“教师传授”的人数:(人)补全条形统计图;求出“教师传授”所占百分比:和“小组合作学习” 所占百分比:补全扇形统计图.
    (3)用样本估计总体.
    【详解】
    解:(1)根据“个人自学后老师点拨”300人.占60%,得(人).
    (2)补全统计图如下:
    (3)∵(人),
    ∴根据抽样调查的结果,估计该校1000名学生中大约有300人选择“小组合作学习”.
    考点:1.条形统计图;2.扇形统计图;3.用样本估计总体.
    题号





    总分
    得分
    批阅人
    x
    ﹣1
    0
    1
    2
    3
    y
    5
    1
    ﹣1
    ﹣1
    1
    每人销售量/件
    1800
    510
    250
    210
    150
    120
    人数
    1
    1
    3
    5
    3
    2
    甲种客车
    乙种客车
    载客量/(人/辆)
    45
    30
    租金/(元/辆)
    400
    280
    相关试卷

    2025届湖北省孝感市八校数学九上开学质量检测试题【含答案】: 这是一份2025届湖北省孝感市八校数学九上开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省孝感市孝南区部分学校数学九上开学监测模拟试题【含答案】: 这是一份2024年湖北省孝感市孝南区部分学校数学九上开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省孝感市八校联谊数学九上开学检测模拟试题【含答案】: 这是一份2024年湖北省孝感市八校联谊数学九上开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map