|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年湖北省咸宁市三校数学九上开学学业质量监测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年湖北省咸宁市三校数学九上开学学业质量监测试题【含答案】01
    2024-2025学年湖北省咸宁市三校数学九上开学学业质量监测试题【含答案】02
    2024-2025学年湖北省咸宁市三校数学九上开学学业质量监测试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年湖北省咸宁市三校数学九上开学学业质量监测试题【含答案】

    展开
    这是一份2024-2025学年湖北省咸宁市三校数学九上开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在平面直角坐标系中,作点A(3,4)关于x轴对称的点A′,再将点A′向左平移6个单位,得到点B,则点B的坐标为( )
    A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)
    2、(4分)某中学书法兴趣小组10名成员的年龄情况如下表:
    则该小组成员年龄的众数和中位数分别是( )
    A.15,15B.16,15C.15,17D.14,15
    3、(4分)如果式子有意义,那么x的范围在数轴上表示为( )
    A.B.
    C.D.
    4、(4分)若函数y=xm+1+1是一次函数,则常数m的值是( )
    A.0B.1C.﹣1D.﹣2
    5、(4分)如图,的对角线相交于点,且,过点作交于点,若的周长为20,则的周长为( )
    A.7B.8C.9D.10
    6、(4分)计算的结果是( )
    A.16B.4C.2D.-4
    7、(4分)如图,正方形ABCD的周长是16,P是对角线AC上的个动点,E是CD的中点,则PE+PD的最小值为( )
    A.2B.2C.2D.4
    8、(4分)如图,在中,平分,交于点,平分,交于点,,,则长为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在正方形ABCD中,P为对角线BD上一点,过P作PE⊥BC于E,PF⊥CD于F,若PE=1,PF=3,则AP=________ .
    10、(4分)已知点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,则=___.
    11、(4分)如图,在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,如果AE=4cm,△ACE的面积是4cm2,四边形BCED的面积是5cm2,那么AB的长是 .
    12、(4分)一组数据:2,﹣1,0,x,1的平均数是0,则x=_____.
    13、(4分)将直线y=2x﹣2向右平移1个单位长度后所得直线的解析式为y=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知,矩形ABCD中,AB=6cm,BC=18cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.

    (1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
    (2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中.
    ①已知点P的速度为每秒10cm,点Q的速度为每秒6cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
    ②若点P、Q的运动路程分别为x、y(单位:cm,xy≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求x与y满足的函数关系式.
    15、(8分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:
    (1)写出男生鞋号数据的平均数,中位数,众数;
    (2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?
    16、(8分)如图:,点在一条直线上,.求证:四边形是平行四边形.
    17、(10分)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.
    (1)若每盆增加x株,平均每盆盈利y元,写出y关于x的函数表达式;
    (2)要使每盆的盈利为10元,且每盆植入株数尽可能少,问每盆应植入多少株?
    18、(10分)如图,在平面直角坐标系中,直线:经过,分别交轴、直线、轴于点、、,已知.
    (1)求直线的解析式;
    (2)直线分别交直线于点、交直线于点,若点在点的右边,说明满足的条件.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若平行四边形中相邻两个内角的度数比为1:3,则其中较小的内角是__________度.
    20、(4分)甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:
    某同学根据上表分析得出如下结论:(l)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀(每分钟输入汉字超过150个为优秀)的人数多于甲班优秀的人数;(3)甲班的成绩波动比乙班的成绩波动小、上述结论中正确的是______.(填序号)
    21、(4分)甲、乙两支球队队员身高的平均数相等,且方差分别为,,则身高罗整齐的球队是________队.(填“甲”或“乙”)
    22、(4分)如图,在菱形ABCD中,点E是AD的中点,对角线AC,BD交于点F,若菱形ABCD的周长是24,则EF=______.
    23、(4分)如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是12cm2,则AC的长是_____cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
    (1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
    (2)求矩形菜园ABCD面积的最大值.
    25、(10分)如图1,将矩形纸片ABCD沿对角线BD向上折叠,点C落在点E处,BE交AD于点F.
    (1)求证:BF=DF;
    (2)如图2,过点D作DG∥BE交BC于点G,连接FG交BD于点O,若AB=6,AD=8,求FG的长.
    26、(12分)计划建一个长方形养鸡场,为了节省材料,利用一道足够长的墙做为养鸡场的一边,另三边用铁丝网围成,如果铁丝网的长为35m.
    (1)计划建养鸡场面积为150m2,则养鸡场的长和宽各为多少?
    (2)能否建成的养鸡场面积为160m2?如果能,请算出养鸡场的长和宽;如果不能,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据直角坐标系坐标特点及平移性质即可求解.
    【详解】
    点A(3,4)关于x轴对称的点A′坐标为(3,-4)
    再将点A′向左平移6个单位得到点B为(-3,-4)
    故选D.
    此题主要考查直角坐标系的坐标变换,解题的关键是熟知直角坐标系的特点.
    2、A
    【解析】
    10名成员的年龄中,15岁的人数最多,因此众数是15岁,从小到大排列后,处在第5,6位两个数的平均数是15岁,因此中位数是15岁.
    【详解】
    解:15岁出现的次数最多,是4次,因此众数是15岁,从小到大排列后处在第5、6位的都是15,因此中位数是15岁.
    故选:A.
    本题考查中位数、众数的意义及求法,出现次数最多的数是众数,从小到大排列后处在中间位置的一个或两个数的平均数是中位数.
    3、D
    【解析】
    根据二次根式有意义的条件可得x﹣1≥0,求出不等式的解集,再在数轴上表示.
    【详解】
    由题意得:x﹣1≥0,
    解得:x≥1,
    在数轴上表示为:
    故选D.
    本题主要考查了二次根式有意义的条件,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.
    4、A
    【解析】
    根据一次函数解析式y=kx+b(k≠0,k、b是常数)的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.可得m+1=1,解方程即可.
    【详解】
    由题意得:m+1=1,
    解得:m=0,
    故选A.
    此题考查一次函数的定义,解题关键在于掌握其定义
    5、D
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OE⊥BD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,由行四边形ABCD的周长为20可得BC+CD=10,然后可求△CDE的周长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴OB=OD,AB=CD,AD=BC,
    ∵OE⊥BD,
    ∴BE=DE,
    ∵平行四边形ABCD的周长为20,
    ∴BC+CD=10,
    ∴△CDE的周长为CD+DE+EC=CD+BC=10.
    故选D.
    此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.
    6、B
    【解析】
    根据算术平方根的定义解答即可.
    【详解】
    ==1.
    故选B.
    本题考查了算术平方根的定义,解题的关键是在于符号的处理.
    7、A
    【解析】
    由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.
    【详解】
    解:如图,连接BE,设BE与AC交于点P',
    ∵四边形ABCD是正方形,
    ∴点B与D关于AC对称,
    ∴P'D=P'B,
    ∴P'D+P'E=P'B+P'E=BE最小.
    即P在AC与BE的交点上时,PD+PE最小,即为BE的长度.
    ∴直角△CBE中,∠BCE=90°,BC=4,CE=CD=2,
    ∴.
    故选:A.
    本题题考查了轴对称中的最短路线问题,要灵活运用正方形的性质、对称性是解决此类问题的重要方法,找出P点位置是解题的关键
    8、A
    【解析】
    先证明AB=AF,DC=DE,再根据EF=AF+DE﹣AD,求出AD,即可得出答案.
    【详解】
    ∵四边形是平行四边形
    ∴,,∥
    ∵平分,平分
    ∴,
    ∴,



    故选A
    本题考查了平行四边形的性质,考点涉及平行线性质以及等角对等边等知识点,熟练掌握平行四边形的性质是解答本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    延长FP、EP交AB、AD于M、N,由正方形的性质,得到∠PBE=∠PDF=45°,再由等腰三角形的性质及正方形的性质得到BE=PE=PM=1,PN=FD=FP=3,由勾股定理即可得出结论.
    【详解】
    解:如图,延长FP、EP交AB、AD于M、N.
    ∵四边形ABCD为正方形,∴∠PBE=∠PDF=45°,∴BE=PE=PM=1,PN=FD=FP=3,则AP= == =.
    本题考查了正方形的性质.求出PM,PN的长是解答本题的关键.
    10、3
    【解析】
    将点A(a,b)带入y=-x+3的图象与反比例函数中,即可求出a+b=3,ab=1,再根据=进行计算.
    【详解】
    ∵点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,
    ∴a+b=3,ab=1,
    ∴==3.
    故答案是:3.
    考查了一次函数和反比例函数上点的坐标特点,解题关键是利用图象上点的坐标满足函数的解析式.
    11、6cm.
    【解析】
    试题分析:由∠ADE=∠C,∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,即可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长为6cm.
    故答案为6cm.
    考点:相似三角形的判定与性质.
    12、-2
    【解析】
    根据平均数的公式可得关于x的方程,解方程即可得.
    【详解】
    由题意得

    解得:x=-2,
    故答案为:-2.
    本题考查了平均数,熟练掌握平均数的计算公式是解题的关键.
    13、2x﹣4
    【解析】
    试题解析:从原直线上找一点(1,0),向右平移一个单位长度为(2,0),
    它在新直线上,可设新直线的解析式为:,代入得
    故所得直线的解析式为:
    故答案为:
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析,;(2)①,②.
    【解析】
    (1)首先证明,由此得出,从而证明四边形为菱形,然后在Rt△ABF中利用勾股定理进一步求解即可;
    (2)①根据题意依次发现当点在上时,点在上以及点在上时,点在或上,也不能构成平行四边形,当点在上、点在上时,才能构成平行四边形,据此进一步求解即可;②以、、、四点为顶点的四边形是平行四边形时,根据题意分当点在上、点在上时或当点在上、点在上时以及当点在上、点在上时三种情况进一步分析求解即可.
    【详解】
    (1)证明:∵四边形是矩形,
    ∴,
    ∴,.
    ∵垂直平分,垂足为,
    ∴,
    在和△COF中,

    ∴,
    ∴,
    ∴四边形为平行四边形,
    又∵,
    ∴四边形为菱形,
    设菱形的边长,则
    在Rt△ABF中,,
    解得:,
    ∴;
    (2)①显然当点在上时,点在上,此时、、、四点不可能构成平行四边形;
    同理点在上时,点在或上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形.
    ∴以、、、四点为顶点的四边形是平行四边形时,,
    ∵点的速度为每秒,点的速度为每秒,运动时间为秒,
    ∴,,
    ∴,
    解得:,
    ∴以、、、四点为顶点的四边形是平行四边形时,;
    ②由题意得,以、、、四点为顶点的四边形是平行四边形时,点、在互相平行的对应边上.
    分三种情况:
    其一:如图1,当点在上、点在上时,,,即;
    其二:如图2,当点在上、点在上时,,,即;
    其三:如图3,当点在上、点在上时,,,即,
    综上所述,与满足的函数关系式是.
    本题主要考查了菱形的判定、全等三角形性质及判定、平行四边形的动点问题与一次函数的综合运用,熟练掌握相关方法是解题关键.
    15、(1)平均数是24.11,中位数是24.1,众数是21;(2)厂家最关心的是众数.
    【解析】
    (1)根据“平均数、中位数和众数的定义及确定方法”结合表中的数据进行分析解答即可;
    (2)根据“平均数、中位数和众数的统计意义”进行分析判断即可.
    【详解】
    解:(1)由题意知:男生鞋号数据的平均数==24.11;
    男生鞋号数据的众数为21;
    男生鞋号数据的中位数==24.1.
    ∴平均数是24.11,中位数是24.1,众数是21.
    (2)∵在平均数、中位数和众数中,众数代表的是销售量最大的鞋号,
    ∴厂家最关心的是众数.
    本题考查求平均数、众数、中位数.熟知:“平均数、中位数和众数的定义及各自的统计意义”是解答本题的关键.
    16、详见解析
    【解析】
    根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.
    【详解】

    ∴AC+CF=EF+CF

    又,





    ∴四边形是平行四边形.
    本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.
    17、(1)y=﹣2.5x2+1.5x+9;(2)4株
    【解析】
    (1)设每盆花苗增加x株,则每盆花苗有(x+3)株, 平均单株盈利为(3﹣2.5x)元,根据“每盆盈利=每盆花苗株数×单株盈利”,列函数式即可;
    (2)由题(1)得“每盆花苗株数×单株盈利=1”,解一元二次方程,在两根中取较小正整数就为增加的株数,则每盆的株数可求.
    【详解】
    (1)解:由题意知:每盆花苗增加x株,则每盆花苗有(x+3)株,
    平均单株盈利为:(3﹣2.5x)元,
    则:y=(x+3)(3﹣2.5x)=﹣2.5x2+1.5x+9
    (2)解:由题意得:(x+3)(3﹣2.5x)=1.
    化简,整理得x2﹣3x+2=2.
    解这个方程,得x1=1,x2=2,
    则3+1=4,2+3=5,
    答:每盆应植4株.
    本题考查一元二次方程的应用,解题关键在于读懂题意列出方程.
    18、(1)的直线解析式为;(2)满足的条件为.
    【解析】
    (1)由点A、B的坐标用待定系数法解即可;
    (2)用m分别表示出E、F的横坐标,然后根据F的横坐标大于E的横坐标即可列式求出m的取值范围.
    【详解】
    (1)解:由题意可得
    解得:
    ∴的直线解析式为
    (2)解:
    已知,点的纵坐标,设

    解得:
    ∵在右边


    解得:
    即满足的条件为
    本题考查了用待定系数法求函数解析式及数形结合的思想,正确掌握相关知识点是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、45
    【解析】
    由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=3∠B,得出∠B+3∠B=180°,得出∠B=45°即可.
    【详解】
    解:如图所示:
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠B+∠C=180°,
    ∵∠B:∠C=1:3,
    ∴∠C=3∠B,
    ∴∠B+4∠B=180°,
    解得:∠B=45°,
    故答案为:45°.
    本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
    20、(1),(2).
    【解析】
    平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.
    【详解】
    解:从表中可知,平均字数都是135,(1)正确;
    甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;
    甲班的方差大于乙班的,则说明乙班的波动小,所以(3)错误.
    (1)(2)正确.
    故答案为:(1)(2).
    本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    21、甲
    【解析】
    根据方差的定义,方差越小数据越稳定.
    【详解】
    解:∵S甲2=0.18,S乙2=0.32,
    ∴S甲2<S乙2,
    ∴身高较整齐的球队是甲;
    故答案为:甲.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    22、3
    【解析】
    由菱形的周长为24,可求菱形的边长为6,则可以求EF.
    【详解】
    解:∵菱形ABCD的周长是24,∴AB=AB=BC=DC=24÷4=6,∵F为对角线AC、BD交点,∴F为DB的中点,又∵E为AD的中点,∴EF=AB=3,故答案为3.
    本题考查了菱形的性质,熟练掌握并灵活运用是解题的关键.
    23、
    【解析】
    证Rt△AED≌Rt△AFB,推出S△AED=S△AFB,根据四边形ABCD的面积是24cm2得出正方形AFCE的面积是12cm2,求出AE、EC的长,根据勾股定理求出AC即可.
    【详解】
    解:∵四边形AFCE是正方形,
    ∴AF=AE,∠E=∠AFC=∠AFB=90°,
    ∵在Rt△AED和Rt△AFB中

    ∴Rt△AED≌Rt△AFB(HL),
    ∴S△AED=S△AFB,
    ∵四边形ABCD的面积是12cm2,
    ∴正方形AFCE的面积是12cm2,
    ∴AE=EC=(cm),
    根据勾股定理得:AC=,
    故答案为:.
    本题考查了全等三角形的性质和判定,正方形性质,勾股定理等知识点的应用.关键是求出正方形AFCE的面积.
    二、解答题(本大题共3个小题,共30分)
    24、(1)D的长为10m;(1)当a≥50时,S的最大值为1150;当0<a<50时,S的最大值为50a﹣a1.
    【解析】
    (1)设AB=xm,则BC=(100﹣1x)m,利用矩形的面积公式得到x(100﹣1x)=450,解方程求得x1=5,x1=45,然后计算100﹣1x后与10进行大小比较即可得到AD的长;(1)设AD=xm,利用矩形面积可得S= x(100﹣x),配方得到S=﹣(x﹣50)1+1150,根据a的取值范围和二次函数的性质分类讨论:当a≥50时,根据二次函数的性质得S的最大值为1150;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a
    【详解】
    (1)设AB=xm,则BC=(100﹣1x)m,
    根据题意得x(100﹣1x)=450,解得x1=5,x1=45,
    当x=5时,100﹣1x=90>10,不合题意舍去;
    当x=45时,100﹣1x=10,
    答:AD的长为10m;
    (1)设AD=xm,
    ∴S=x(100﹣x)=﹣(x﹣50)1+1150,
    当a≥50时,则x=50时,S的最大值为1150;
    当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a1,
    综上所述,当a≥50时,S的最大值为1150;当0<a<50时,S的最大值为50a﹣a1.
    本题考查了一元二次方程及二次函数的应用.解决第(1)问时,要注意根据二次函数的性质并结合a的取值范围进行分类讨论,这也是本题的难点.
    25、(1)证明见解析;(2).
    【解析】
    (1)根据两直线平行内错角相等及折叠特性判断;
    (2)根据已知矩形性质及第一问证得邻边相等判断四边形BFDG是菱形,再根据折叠特性设未知边,构造勾股定理列方程求解.
    【详解】
    (1)证明:根据折叠得,∠DBC=∠DBE,
    又AD∥BC,
    ∴∠DBC=∠ADB,
    ∴∠DBE=∠ADB,
    ∴DF=BF;
    (2)∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴FD∥BG,
    又∵DG∥BE,
    ∴四边形BFDG是平行四边形,
    ∵DF=BF,
    ∴四边形BFDG是菱形;
    ∵AB=6,AD=8,
    ∴BD=1.
    ∴OB= BD=2.
    假设DF=BF=x,∴AF=AD-DF=8-x.
    ∴在直角△ABF中,AB2+AF2=BF2,即62+(8-x)2=x2,
    解得x=,
    即BF=,
    ∴,
    ∴FG=2FO=.
    此题考查了四边形综合题,结合矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
    26、(1)养鸡场的长和宽各为15m、10m或20m、7.5m;(2)不能,理由见解析.
    【解析】
    (1)设养鸡场垂直于墙的一边长为x米,则另一边长为(35-2x)米,根据矩形面积公式即可列出方程,解方程即得结果;
    (2)若能建成,仿(1)题的方法列出方程,再根据一元二次方程的根的判别式检验即可得出结论.
    【详解】
    解:(1)设养鸡场垂直于墙的一边长为x米,根据题意,得:
    =150,解得:,,
    当时,==15;
    当时,==20;
    答:养鸡场的长和宽各为15m、10m或20m、7.5m.
    (2)不能.理由如下:
    若能建成,设养鸡场垂直于墙的一边长为y米,则有=160,即,
    ∵,
    ∴此方程无解,所以无法建成面积为160m2的养鸡场.
    本题是一元二次方程的应用问题,主要考查了矩形的面积、一元二次方程的解法和根的判别式等知识,属于常考题型,正确理解题意、找准相等关系列出方程是解题的关键.
    题号





    总分
    得分
    年龄/岁
    14
    15
    16
    17
    人数
    3
    4
    2
    1
    鞋号
    23.5
    24
    24.5
    25
    25.5
    26
    人数
    3
    4
    4
    7
    1
    1
    班级
    参加人数
    中位数
    方差
    平均数

    55
    149
    191
    135

    55
    151
    110
    135
    相关试卷

    2024-2025学年湖州市吴兴区九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年湖州市吴兴区九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北宜昌九上数学开学学业质量监测试题【含答案】: 这是一份2024-2025学年湖北宜昌九上数学开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省枣阳阳光学校数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年湖北省枣阳阳光学校数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map