搜索
    上传资料 赚现金
    英语朗读宝

    湖北省黄冈市麻城市思源实验学校2024-2025学年数学九上开学质量检测试题【含答案】

    湖北省黄冈市麻城市思源实验学校2024-2025学年数学九上开学质量检测试题【含答案】第1页
    湖北省黄冈市麻城市思源实验学校2024-2025学年数学九上开学质量检测试题【含答案】第2页
    湖北省黄冈市麻城市思源实验学校2024-2025学年数学九上开学质量检测试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省黄冈市麻城市思源实验学校2024-2025学年数学九上开学质量检测试题【含答案】

    展开

    这是一份湖北省黄冈市麻城市思源实验学校2024-2025学年数学九上开学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)点关于y轴对称的点的坐标是( )
    A.B.C.D.
    2、(4分)如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若,BD=4,则菱形ABCD的周长为( )
    A.4B.C.D.28
    3、(4分)已知:如图①,长方形ABCD中,E是边AD上一点,且AE=6cm,点P从B出发,沿折线BE-ED-DC匀速运动,运动到点C停止.P的运动速度为2cm/s,运动时间为t(s),△BPC的面积为y(cm2),y与t的函数关系图象如图②,则下列结论正确的有( )
    ①a=7 ②AB=8cm ③b=10 ④当t=10s时,y=12cm2
    A.1个B.2个C.3个D.4个
    4、(4分)己知一个多边形的内角和是360°,则这个多边形是( )
    A.四边形B.五边形C.六边形D.七边形
    5、(4分)若方程是一元二次方程,则m的值为( )
    A.0B.±1C.1D.–1
    6、(4分)在平行四边形ABCD中,若∠B=135°,则∠D=( )
    A.45°B.55°C.135°D.145°
    7、(4分)已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图象大致是( )
    A.B.
    C.D.
    8、(4分)如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是( )
    A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5
    C.a:b:c=::D.a=6,b=10,c=12
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知菱形两条对角线的长分别为4和6,则菱形的边长为______.
    10、(4分)如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.
    11、(4分)如图,在中,,点D,E,F分别是AB,AC,BC边上的中点,连结BE,DF,已知则_________.
    12、(4分)a与5的和的3倍用代数式表示是________.
    13、(4分)如图,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,AD=2,则AC的长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系中,直线分别交两轴于点,点的横坐标为4,点在线段上,且.
    (1)求点的坐标;
    (2)求直线的解析式;
    (3)在平面内是否存在这样的点,使以为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,不必说明理由.
    15、(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(6,4),E为AB的中点,过点D(8,0)和点E的直线分别与BC、y轴交于点F、G.
    (1)求直线DE的函数关系式;
    (2)函数y=mx﹣2的图象经过点F且与x轴交于点H,求出点F的坐标和m值;
    (3)在(2)的条件下,求出四边形OHFG的面积.
    16、(8分)已知直线y1=mx+3n﹣1与直线y1=(m﹣1)x﹣1n+1.
    (1)如果m=﹣1,n=1,当x取何值时,y1>y1?
    (1)如果两条直线相交于点A,A点的横坐标x满足﹣1<x<13,求整数n的值.
    17、(10分)如图,四边形为菱形,已知,.
    (1)求点的坐标;
    (2)求经过点,两点的一次函数的解析式.
    (3)求菱形的面积.
    18、(10分)如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)
    (1)求直线AB的函数的表达式;
    (2)直接写出不等式(kx+b)﹣ax<0的解集;
    (3)求△AOC的面积;
    (4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是________.
    20、(4分)一组数据为1,2,3,4,5,6,则这组数据的中位数是______.
    21、(4分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴交于A,B两点,分别以点A,B为圆心,大于AB长为半径作圆弧,两弧在第一象限交于点C,若点C的坐标为(m+1,7﹣m),则m的值是_____.
    22、(4分)对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.
    23、(4分)计算: =_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示。设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价)。
    (1)设商场购进碳酸饮料y箱,直接写出y与x的函数解析式;
    (2)求总利润w关于x的函数解析式;
    (3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润。
    25、(10分)如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.
    求证:(1)△BEG≌△DFH;
    (2)四边形GEHF是平行四边形.
    26、(12分)如图(1),为等腰三角形,,点是底边上的一个动点,,.
    (1)用表示四边形的周长为 ;
    (2)点运动到什么位置时,四边形是菱形,请说明理由;
    (3)如果不是等腰三角形图(2),其他条件不变,点运动到什么位置时,四边形是菱形(不必说明理由).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
    【详解】
    解:点点关于y轴对称的点坐标为
    故选A.
    本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
    (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
    (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
    (3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    2、C
    【解析】
    首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.
    【详解】
    解:∵E,F分别是AB,BC边上的中点,EF=,
    ∴AC=2EF=2,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,OA=AC=,OB=BD=2,
    ∴AB==,
    ∴菱形ABCD的周长为4.
    故选C.
    3、B
    【解析】
    先通过t=5,y=20计算出AB长度和BC长度,则DE长度可求,根据BE+DE长计算a的值,b的值是整个运动路程除以速度即可,当t=1时找到P点位置计算△BPC面积即可判断y值.
    【详解】
    解:当P点运动到E点时,△BPC面积最大,结合函数图象可知当t=5时,△BPC面积最大为20,
    ∴BE=5×2=1.
    在Rt△ABE中,利用勾股定理可得AB=8,
    又,所以BC=1.
    则ED=1-6=2.当P点从E点到D点时,所用时间为2÷2=2s,∴a=5+2=3.
    故①和②都正确;
    P点运动完整个过程需要时间t=(1+2+8)÷2=11s,即b=11,③错误;
    当t=1时,P点运动的路程为1×2=20cm,此时PC=22-20=2,
    △BPC面积为×1×2=1cm2,④错误.
    故选:B.
    本题主要考查动点问题的函数问题,解题的关键是熟悉整个运动过程,找到关键点(一般是函数图象的折点),对应数据转化为图形中的线段长度.
    4、A
    【解析】
    根据多边形的内角和公式即可求解.
    【详解】
    设边数为n,则(n-2)×180°=360°,
    解得n=4
    故选A.
    此题主要考查多边形的内角和,解题的关键是熟知公式的运用.
    5、D
    【解析】
    根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,且二次项系数不等于0,即可进行求解,
    【详解】
    因为方程是一元二次方程,
    所以,,
    解得且
    所以,
    故选D.
    本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.
    6、C
    【解析】
    根据平行四边形的性质解答即可.
    【详解】
    解:∵在平行四边形ABCD中,∠B=135°,
    ∴∠D=∠B=135°,
    故选:C.
    本题考查了平行四边形的性质的知识,解答本题的关键是根据平行四边形的性质得出∠D=∠B.
    7、B
    【解析】
    试题分析:根据已知条件“点(k,b)为第四象限内的点”推知k、b的符号,由它们的符号可以得到一次函数y=kx+b的图象所经过的象限.
    解:∵点(k,b)为第四象限内的点,
    ∴k>0,b<0,
    ∴一次函数y=kx+b的图象经过第一、三象限,且与y轴交于负半轴,观察选项,B选项符合题意.
    故选B.
    考点:一次函数的图象.
    8、D
    【解析】
    根据勾股定理的逆定理和三角形的内角和定理进行判定即可.
    【详解】
    解:A、∵∠A=25°,∠B=65°,
    ∴∠C=180°﹣∠A﹣∠B=90°,
    ∴△ABC是直角三角形,故A选项正确;
    B、∵∠A:∠B:∠C=2:3:5,
    ∴,
    ∴△ABC是直角三角形;故B选项正确;
    C、∵a:b:c=::,
    ∴设a=k,b=k,c=k,
    ∴a2+b2=5k2=c2,
    ∴△ABC是直角三角形;故C选项正确;
    D、∵62+102≠122,
    ∴△ABC不是直角三角形,故D选项错误.
    故选:D.
    本题主要考查直角三角形的判定方法,熟练掌握勾股定理的逆定理、三角形的内角和定理是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据菱形的性质及勾股定理即可求得菱形的边长.
    【详解】
    解:因为菱形的对角线互相垂直平分,
    所以对角线的一半为2和3,
    根据勾股定理可得菱形的边长为
    故答案为:.
    此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.
    10、AB=AD.
    【解析】
    由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.
    【详解】
    添加AB=AD,
    ∵OA=OC,OB=OD,
    ∴四边形ABCD为平行四边形,
    ∵AB=AD,
    ∴四边形ABCD是菱形,
    故答案为:AB=AD.
    此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.
    11、1
    【解析】
    已知BE是Rt△ABC斜边AC的中线,那么BE=AC;EF是△ABC的中位线,则DF=AC,则DF=BE=1.
    【详解】
    解:,E为AC的中点,

    分别为AB,BC的中点,

    故答案为:1.
    此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.
    12、3 (a+5)
    【解析】
    根据题意,先求和,再求倍数.
    解:a与5的和为a+5,
    a与5的和的3倍用代数式表示是3(a+5).
    列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.
    13、1
    【解析】
    利用直角三角形30度角的性质,可得AC=2AD=1.
    【详解】
    解:在矩形ABCD中,OC=OD,
    ∴∠OCD=∠ODC,
    ∵∠AOD=60°,
    ∴∠OCD=∠AOD=×60°=30°,
    又∵∠ADC=90°,
    ∴AC=2AD=2×2=1.
    故答案为1.
    本题考查了矩形的性质,主要利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键
    三、解答题(本大题共5个小题,共48分)
    14、(1)点;(2);(3)点的坐标是,,.
    【解析】
    (1)首先根据直线y=-x+8分别交两轴于点A、B,可得点A的坐标是(8,0),点B的坐标是(0,8),然后根据点在线段上,且,即可求出点D的坐标;
    (2)利用待定系数法可求直线CD的解析式;
    (3)设点,分情况讨论,由平行四边形的性质和中点坐标公式,可求出点F的坐标.
    【详解】
    解:(1)∵直线分别交两轴于点,
    ∴当时,,当时,
    ∴点,点
    ∵点在线段上,且.
    ∴点
    (2)∵点的横坐标为4,且在直线上,
    ∴,
    ∴点
    设直线的解析式
    ∴,解得:
    ∴直线解析式为:.
    (3)设点
    ①若以为边,
    ∵四边形是平行四边形,∴互相平分,
    ∵点,点,点,点
    ∴,解得,
    ∴点
    ②若以为边
    ∵四边形是平行四边形,∴互相平分,
    ∵点,点,点,点
    ∴,解得,
    ∴点
    ③若以为边,
    ∵四边形是平行四边形,∴互相平分,
    ∵点,点,点,点
    ∴,解得,
    ∴点
    综上所述:点的坐标是,,.
    此题考查平行四边形的性质,中点坐标公式,求一次函数的解析式,解题关键在于分情况讨论.
    15、(1)直线DE的函数关系式为:y=﹣x+8;(2)点F的坐标为;(4,4);m=;(3)18.
    【解析】
    试题分析:(1)由顶点B的坐标为(6,4),E为AB的中点,可求得点E的坐标,又由过点D(8,0),利用待定系数法即可求得直线DE的函数关系式;
    (2)由(1)可求得点F的坐标,又由函数y=mx﹣2的图象经过点F,利用待定系数法即可求得m值;
    (3)首先可求得点H与G的坐标,即可求得CG,OC,CF,OH的长,然后由S四边形OHFG=S梯形OHFC+S△CFG,求得答案.
    解:(1)设直线DE的解析式为:y=kx+b,
    ∵顶点B的坐标为(6,4),E为AB的中点,
    ∴点E的坐标为:(6,2),
    ∵D(8,0),
    ∴,
    解得:,
    ∴直线DE的函数关系式为:y=﹣x+8;
    (2)∵点F的纵坐标为4,且点F在直线DE上,
    ∴﹣x+8=4,
    解得:x=4,
    ∴点F的坐标为;(4,4);
    ∵函数y=mx﹣2的图象经过点F,
    ∴4m﹣2=4,
    解得:m=;
    (3)由(2)得:直线FH的解析式为:y=x﹣2,
    ∵x﹣2=0,
    解得:x=,
    ∴点H(,0),
    ∵G是直线DE与y轴的交点,
    ∴点G(0,8),
    ∴OH=,CF=4,OC=4,CG=OG﹣OC=4,
    ∴S四边形OHFG=S梯形OHFC+S△CFG=×(+4)×4+×4×4=18.
    16、(1)当x>﹣1时,y1>y1;(1)整数n=﹣1或2.
    【解析】
    (1)把m=﹣1,n=1代入直线解析式,求出交点坐标,根据交点坐标即可求解;
    (1)根据两直线相交联立方程解答即可.
    【详解】
    (1)∵m=﹣1,n=1,
    ∴直线y1=mx+3n﹣1=﹣x+1,直线y1=(m﹣1)x﹣1n+1=﹣1x,
    依题意有,
    解得,
    故当x>﹣1时,y1>y1;
    (1)由 y1=y1得:mx+3n﹣1=(m﹣1)x﹣1n+1,
    解得:x=﹣5n+3,
    ∵﹣1<x<13,
    ∴﹣1<﹣5n+3<13,
    解得:﹣1<n<1,
    又∵n是整数,
    ∴整数n=﹣1或2.
    本题考查了两条直线相交或平行问题、关键是根据两直线相交联立方程解答.
    17、(1)C(0,);(2);(3)1
    【解析】
    (1)利用勾股定理求出AB,再利用菱形的性质求出OC的长即可.
    (2)求出C,D两点坐标,利用待定系数法即可解决问题.
    (3)利用菱形的面积公式计算即可.
    【详解】
    解:(1)∵A(3,0),B(0,4),
    ∴OA=3,OB=4,
    ∴AB=5,
    ∵四边形ABCD是菱形,
    ∴BC=AB=5,
    ∴OC=1,
    ∴C(0,-1);
    (2)由题意,四边形为菱形,C(0,-1),
    ∴D(3,-5),
    设直线CD的解析式为y=kx+b,

    解得:,
    ∴直线CD的解析式为.
    (3)∵,,
    ∴S菱形ABCD=5×3=1.
    本题考查一次函数的性质,菱形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    18、(2)y=﹣x+2.(2)x<﹣2.(3)3;(4)(2,2)或(0,2)或P(2+,﹣)或(2﹣,).
    【解析】
    (2)利用待定系数法即可解决问题;
    (2)观察图象写出直线y=kx+b的图象在直线y=ax的图象下方的自变量的取值范围即可;
    (3)求出点C坐标,利用三角形的面积公式计算即可;
    (4)分三种情形分别讨论求解即可解决问题;
    【详解】
    解:(2)依题意得:,
    解得,
    ∴所求的一次函数的解析式是y=﹣x+2.
    (2)观察图形可知:不等式(kx+b)﹣ax<0的解集;
    x<﹣2.
    (3)对于y=﹣x+2,令y=0,得x=2
    ∴C(2,0),
    ∴OC=2.
    ∴S△AOC=×2×3=3.
    (4)
    ①当点P与B重合时,OP2=OC,此时P2(0,2);
    ②当PO=PC时,此时P2在线段OC的垂直平分线上,P2(2,2);
    ③当PC=OC=2时,设P(m.﹣m+2),
    ∴(m﹣2)2+(﹣m+2)2=4,
    ∴m=2±,
    可得P3(2﹣,),P4(2+,﹣),
    综上所述,满足条件的点P坐标为:(2,2)或(0,2)或P(2+,﹣)或(2﹣,).
    本题考查一次函数综合题、一元一次不等式的解、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、或
    【解析】
    分逆时针旋转和顺时针旋转两种情况考虑:①顺时针旋转时,由点D的坐标利用正方形的性质可得出正方形的边长以及BD的长度,由此可得出点D′的坐标;②逆时针旋转时,找出点B′落在y轴正半轴上,根据正方形的边长以及BD的长度即可得出点D′的坐标.综上即可得出结论.
    【详解】
    解:分逆时针旋转和顺时针旋转两种情况(如图所示):
    ①顺时针旋转时,点B′与点O重合,
    ∵点D(4,3),四边形OABC为正方形,
    ∴OA=BC=4,BD=1,
    ∴点D′的坐标为(-1,0);
    ②逆时针旋转时,点B′落在y轴正半轴上,
    ∵OC=BC=4,BD=1,
    ∴点B′的坐标为(0,8),点D′的坐标为(1,8).
    故答案为:(-1,0)或(1,8).
    本题考查了正方形的性质,旋转的性质,以及坐标与图形变化中的旋转,分逆时针旋转和顺时针旋转两种情况考虑是解题的关键.
    20、3.5
    【解析】
    将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
    【详解】
    根据中位数的概念,可知这组数据的中位数为.
    本题考查中位数的概念.
    21、3
    【解析】
    在y=﹣x+3中,令x=0则y=3,令y=0,则x=3,
    ∴OA=3,OB=3,
    ∴由题意可知,点C在∠AOB的平分线上,
    ∴m+1=7﹣m,
    解得:m=3.
    故答案为3.
    22、或
    【解析】
    【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.
    【详解】M{3,2x+1,4x-1}==2x+1,
    ∵M{3,2x+1,4x-1}=min{2,-x+3,5x},
    ∴有如下三种情况:
    ①2x+1=2,x=,此时min{2,-x+3,5x}= min{2,,}=2,成立;
    ②2x+1=-x+3,x=,此时min{2,-x+3,5x}= min{2,,}=2,不成立;
    ③2x+1=5x,x=,此时min{2,-x+3,5x}= min{2,,}=,成立,
    ∴x=或,
    故答案为或.
    【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.
    23、
    【解析】
    先利用二次根式的性质,再判断的大小去绝对值即可.
    【详解】
    因为,
    所以
    故答案为:
    此题考查的是二次根式的性质和去绝对值.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=60-x;(2)w=5x+420;(3)该商场购进两种饮料分别为40箱和20箱时,能获得最大利润620元.
    【解析】
    (1)根据购进果汁饮料和碳酸饮料共60箱即可求解;
    (2)根据总利润=每个的利润数量就可以表示出w与x之间的关系式;
    (3)由题意得40x+25(60-x)≤2100,解得x的值,然后可求y值,根据一次函数的性质可以求出进货方案及最大利润.
    【详解】
    (1)y与x的函数解析式为y=60-x.
    (2)总利润w关于x的函数解析式为
    w=(52-40)x+(32-25)(60-x)=5x+420.
    (3)由题意得40x+25(60-x)≤2100,解得x≤40,
    ∵y=5x+420,y随x的增大而增大,
    ∴当x=40时,y最大值=5×40+420=620(元),
    此时购进碳酸饮料60-40=20(箱).
    ∴该商场购进两种饮料分别为40箱和20箱时,能获得最大利润620元.
    本题考查了一次函数的实际运用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.
    25、 (1)证明见解析;(2)证明见解析.
    【解析】
    (1)利用平行四边形的性质得出BG=DH,进而利用SAS得出△BEG≌△DFH;
    (2)利用全等三角形的性质得出∠GEF=∠HFB,进而得出答案.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥DC,
    ∴∠ABE=∠CDF,
    ∵AG=CH,
    ∴BG=DH,
    在△BEG和△DFH中,

    ∴△BEG≌△DFH(SAS);
    (2)∵△BEG≌△DFH(SAS),
    ∴∠BEG=∠DFH,EG=FH,
    ∴∠GEF=∠HFB,
    ∴GE∥FH,
    ∴四边形GEHF是平行四边形.
    此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.
    26、(1);(2)当为中点时,四边形是菱形,见解析;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,理由见解析.
    【解析】
    (1)根据平行线的性质和等腰三角形的性质证明∠B=∠DPB,∠C=∠EPC,进而可得DB=DP,PE=EC,从而可得四边形ADPE的周长=AD+DP+PE+AE=AB+AC;
    (2)当P运动到BC中点时,四边形ADPE是菱形;首先证明四边形ADPE是平行四边形,再证明DP=PE即可得到四边形ADPE是菱形;
    (3)P运动到∠A的平分线上时,四边形ADPE是菱形,首先证明四边形ADPE是平行四边形,再根据平行线的性质可得∠1=∠3,从而可证出∠2=∠3,进而可得AE=EP,然后可得四边形ADPE是菱形.
    【详解】
    (1)∵PD∥AC,PE∥AB,
    ∴∠DPB=∠C,∠EPC=∠B,
    ∵AB=AC,
    ∴∠B=∠C,
    ∴∠B=∠DPB,∠C=∠EPC,
    ∴DB=DP,PE=EC,
    ∴四边形ADPE的周长是:AD+DP+PE+AE=AB+AC=2a;
    (2)当P运动到BC中点时,四边形ADPE是菱形;
    ∵PD∥AC,PE∥AB,
    ∴四边形ADPE是平行四边形,
    ∴PD=AE,PE=AD,
    ∵PD∥AC,PE∥AB,
    ∴∠DPB=∠C,∠EPC=∠B,
    ∵P是BC中点,
    ∴PB=PC,
    在△DBP和△EPC中,

    ∴△DBP≌△EPC(ASA),
    ∴DP=EC,
    ∵EC=PE,
    ∴DP=EP,
    ∴四边形ADPE是菱形;
    (3)P运动到∠A的平分线上时,四边形ADPE是菱形,
    ∵PD∥AC,PE∥AB,
    ∴四边形ADPE是平行四边形,
    ∵AP平分∠BAC,
    ∴∠1=∠2,
    ∵AB∥EP,
    ∴∠1=∠3,
    ∴∠2=∠3,
    ∴AE=EP,
    ∴四边形ADPE是菱形.
    此题考查菱形的判定,等腰三角形的性质,解题关键在于证明∠B=∠DPB,∠C=∠EPC.
    题号





    总分
    得分
    饮料
    果汁饮料
    碳酸饮料
    进价(元/箱)
    40
    25
    售价(元/箱)
    52
    32

    相关试卷

    海南省乐东思源实验学校2024-2025学年数学九上开学质量检测试题【含答案】:

    这是一份海南省乐东思源实验学校2024-2025学年数学九上开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届湖北省黄冈市麻城市九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2025届湖北省黄冈市麻城市九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省麻城思源实验学校九上数学开学综合测试试题【含答案】:

    这是一份2024-2025学年湖北省麻城思源实验学校九上数学开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map