搜索
    上传资料 赚现金
    英语朗读宝

    湖北省恩施市巴东县2025届九上数学开学检测试题【含答案】

    湖北省恩施市巴东县2025届九上数学开学检测试题【含答案】第1页
    湖北省恩施市巴东县2025届九上数学开学检测试题【含答案】第2页
    湖北省恩施市巴东县2025届九上数学开学检测试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省恩施市巴东县2025届九上数学开学检测试题【含答案】

    展开

    这是一份湖北省恩施市巴东县2025届九上数学开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果,那么代数式的值为( )
    A.B.C.D.
    2、(4分)如图,在四边形中,,分别是的中点,则四边形一定是( )
    A.平行四边形B.矩形C.菱形D.正方形
    3、(4分)下面各问题中给出的两个变量x,y,其中y是x的函数的是
    ① x是正方形的边长,y是这个正方形的面积;
    ② x是矩形的一边长,y是这个矩形的周长;
    ③ x是一个正数,y是这个正数的平方根;
    ④ x是一个正数,y是这个正数的算术平方根.
    A.①②③B.①②④C.②④D.①④
    4、(4分)如图,在长方形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,连结EF,若AB=6,BC=4,则FD的长为( )
    A.2B.4C.D.2
    5、(4分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,AB=8,,则CG的长是( )
    A.2B.3C.4D.5
    6、(4分)若反比例函数,在每个象限内y随x的增大而减小,则m的取值范围是( )
    A.m>B.m<C.m>一D.m<一
    7、(4分)若x2+mxy+y2是一个完全平方式,则m=( )
    A.2 B.1 C.±1 D.±2
    8、(4分)满足下列条件的四边形不是正方形的是( )
    A.对角线相互垂直的矩形B.对角线相等的菱形
    C.对角线相互垂直且相等的四边形D.对角线垂直且相等的平行四边形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)关于的方程有实数根,则的取值范围是_________.
    10、(4分)若式子是二次根式,则x的取值范围是_____.
    11、(4分)如图,在矩形中,,是上的一点,将矩形沿折叠后,点落在边的点上,则的长为_________.
    12、(4分)一个多边形每个外角都是,则这个多边形是_____边形.
    13、(4分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.
    (1)当点E在正方形ABCD内部时,
    ①根据题意,在图1中补全图形;
    ②判断AG与CE的数量关系与位置关系并写出证明思路.
    (2)当点B,D,G在一条直线时,若AD=4,DG=,求CE的长.(可在备用图中画图)
    15、(8分)如图,在矩形中,对角线、交于点,且过点作,过点作,两直线相交于点.
    (1)求证:四边形是菱形;
    (2)若,求矩形的面积.
    16、(8分)如图,在平面直角坐标系中,A(3,0),B(0,3),过点B画y轴的垂线l,点C在线段AB上,连结OC并延长交直线l于点D,过点C画CE⊥OC交直线l于点E.
    (1)求∠OBA的度数,并直接写出直线AB的解析式;
    (2)若点C的横坐标为2,求BE的长;
    (3)当BE=1时,求点C的坐标.
    17、(10分)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180元,售价320元;乙种服装每件进价150元,售价280元.
    (1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?
    (2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元, 且不超过26800元,则该专卖店有几种进货方案?
    (3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0,
    故选A.
    本题考查了反比例函数的性质,①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    7、D
    【解析】根据完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2可知,要使x2+mxy+y2符合完全平方公式的形式,该式应为:x2+2xy+y2=(x+y)2或x2-2xy+y2=(x-y)2. 对照各项系数可知,系数m的值应为2或-2.
    故本题应选D.
    点睛:
    本题考查完全平方公式的形式,应注意完全平方公式有(a+b)2、(a-b)2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.
    8、C
    【解析】
    A.对角线相互垂直的矩形是正方形,故本项正确;B. 对角线相等的菱形是正方形,故本项正确;C.对角线互相垂直、平分、且相等的四边形才是正方形,故本项错误;D. 对角线垂直且相等的平行四边形是正方形,故本项正确.故选C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、k≤2
    【解析】
    当k-1=0时,解一元一次方程可得出方程有解;当k-1≠0时,利用根的判别式△=16-2k≥0,即可求出k的取值范围.综上即可得出结论.
    【详解】
    当k-1=0,即k=1时,方程为2x+1=0,
    解得x=-,符合题意;
    ②当k-1≠0,即k≠1时,△=22-2(k-1)=16-2k≥0,
    解得:k≤2且k≠1.
    综上即可得出k的取值范围为k≤2.
    故答案为k≤2.
    本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.
    10、:x≥1
    【解析】
    根据根式的意义,要使根式有意义则必须被开方数大于等于0.
    【详解】
    解:若式子 是二次根式,则x的取值范围是:x≥1.
    故答案为:x≥1.
    本题主要考查根式的取值范围,这是考试的常考点,应当熟练掌握.
    11、1
    【解析】
    首先求出DF的长度,进而求出AF的长度;根据勾股定理列出关于线段AE的方程即可解决问题.
    【详解】
    设AE=x,
    由题意得:
    FC=BC=10,BE=EF=8-x;
    ∵四边形ABCD为矩形,
    ∴∠D=90°,DC=AB=8,
    由勾股定理得:
    DF2=102-82=16,
    ∴DF=6,AF=10-6=4;
    由勾股定理得:
    EF2=AE2+AF2,
    即(8-x)2= x2+42
    解得:x=1,
    即AE=1.
    故答案为:1.
    该命题以正方形为载体,以翻折变换为方法,以考查勾股定理、全等三角形的性质为核心构造而成;解题的关键是灵活运用有关定理来分析、判断或解答.
    12、十二
    【解析】
    利用任何多边形的外角和是360°即可求出答案.
    【详解】
    多边形的外角的个数是360÷30=1,所以多边形的边数是1.
    故答案为:十二.
    本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
    13、1.2
    【解析】
    根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
    【详解】
    ∵在△ABC中,AB=3,AC=4,BC=5,
    ∴AB2+AC2=BC2,
    即∠BAC=90°.
    又PE⊥AB于E,PF⊥AC于F,
    ∴四边形AEPF是矩形,
    ∴EF=AP.
    ∵M是EF的中点,
    ∴AM=EF=AP.
    因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,
    ∴AM的最小值是1.2.
    本题考查了勾股定理, 矩形的性质,熟练的运用勾股定理和矩形的性质是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) ①见解析;②AG=CE,AG⊥CE,理由见解析;(2)CE的长为或
    【解析】
    (1)①根据题意补全图形即可;
    ②先判断出∠GDA=∠EDC,进而得出△AGD≌△CED,即可得出AG=CE,延长CE分别交AG、AD于点F、H,判断出∠AFH=∠HDC=90°即可得出结论;
    (2)分两种情况,①当点G在线段BD的延长线上时,②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.
    【详解】
    解:(1)当点E在正方形ABCD内部时,
    ①依题意,补全图形如图1:
    ②AG=CE,AG⊥CE.
    理由:
    在正方形ABCD,
    ∴AD=CD,∠ADC=90°,
    ∵由DE绕着点D顺时针旋转90°得DG,
    ∴∠GDE=∠ADC=90°,GD=DE,
    ∴∠GDA=∠EDC
    在△AGD和△CED中,

    ∴△AGD≌△CED,
    ∴AG=CE.
    如图2,延长CE分别交AG、AD于点F、H,
    ∵△AGD≌△CED,
    ∴∠GAD=∠ECD,
    ∵∠AHF=∠CHD,
    ∴∠AFH=∠HDC=90°,
    ∴AG⊥CE.
    (2)①当点G在线段BD的延长线上时,如图3所示.
    过G作GM⊥AD于M.
    ∵BD是正方形ABCD的对角线,
    ∴∠ADB=∠GDM=45°.
    ∵GM⊥AD,DG=
    ∴MD=MG=2,
    ∴AM=AD+DM=6
    在Rt△AMG中,由勾股定理得:AG==,
    同(1)可证△AGD≌△CED,
    ∴CE=AG=
    ②当点G在线段BD上时,如图4所示,
    过G作GM⊥AD于M.
    ∵BD是正方形ABCD的对角线,
    ∴∠ADG=45°
    ∵GM⊥AD,DG=
    ∴MD=MG=2,
    ∴AM=AD-MD=2
    在Rt△AMG中,由勾股定理得:AG==,
    同(1)可证△AGD≌△CED,
    ∴CE=AG=.
    故CE的长为或.
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,解(1)的关键是判断出△AGD≌△CED,解(2)的关键是构造直角三角形,是一道中考常考题.
    15、(1)见解析;(2)矩形的面积.
    【解析】
    (1)根据邻边相等的平行四边形是菱形即可判断;
    (2)利用勾股定理求出的长即可解决问题.
    【详解】
    (1)证明:∵,,
    ∴四边形是平行四边形,
    ∵四边形是矩形,
    ∴,
    ∴四边形是菱形;
    (2)∵四边形是菱形
    ∴,
    四边形是矩形,
    ,,
    ∴,

    ∴矩形的面积.
    本题考查矩形的性质、菱形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    16、(3)直线AB的解析式为:y=﹣x+3;(3)BE=3;(3)C的坐标为(3,3).
    【解析】
    (3)根据A(3,0),B(0,3)可得OA=OB=3,得出△AOB是等腰直角三角形,∠OBA=45°,进而求出直线AB的解析式;
    (3)作CF⊥l于F,CG⊥y轴于G,利用ASA证明Rt△OGC≌Rt△EFC(ASA),得出EF=OG=3,那么BE=3;
    (3)设C的坐标为(m,-m+3).分E在点B的右侧与E在点B的左侧两种情况进行讨论即可.
    【详解】
    (3)∵A(3,0),B(0,3),∴OA=OB=3.∵∠AOB=90°,
    ∴∠OBA=45°,∴直线AB的解析式为:y=﹣x+3;
    (3)作CF⊥l于F,CG⊥y轴于G,∴∠OGC=∠EFC=90°.∵点C的横坐标为3,点C在y=﹣x+3上,∴C(3,3),CG=BF=3,OG=3.∵BC平分∠OBE,
    ∴CF=CG=3.∵∠OCE=∠GCF=90°,∴∠OCG=∠ECF,
    ∴Rt△OGC≌Rt△EFC(ASA),∴EF=OG=3,∴BE=3;
    (3)设C的坐标为(m,﹣m+3).
    当E在点B的右侧时,由(3)知EF=OG=m﹣3,
    ∴m﹣3=﹣m+3,
    ∴m=3,
    ∴C的坐标为(3,3);
    当E在点B的左侧时,同理可得:m+3=﹣m+3,
    ∴m=3,
    ∴C的坐标为(3,3).
    此题考查一次函数,等腰直角三角形的性质,全等三角形的判定与性质,解题关键在于作辅助线
    17、(1)购进甲、乙两种服装2件、1件(2)共有11种方案(3)购进甲种服装70件,乙种服装130件
    【解析】
    (1)设购进甲种服装x件,则乙种服装是(200-x)件,根据两种服装共用去32400元,即可列出方程,从而求解.
    (2)设购进甲种服装y件,则乙种服装是(200-y)件,根据总利润(利润=售价-进价)不少于26700元,且不超过2620元,即可得到一个关于y的不等式组,解不等式组即可求得y的范围,再根据y是正整数整数即可求解.
    (3)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
    【详解】
    解:(1)设购进甲种服装x件,则乙种服装是(200-x)件,
    根据题意得:12x+150(200-x)=32400,
    解得:x=2,200-x=200-2=1.
    ∴购进甲、乙两种服装2件、1件.
    (2)设购进甲种服装y件,则乙种服装是(200-y)件,根据题意得:
    ,解得:70≤y≤2.
    ∵y是正整数,∴共有11种方案.
    (3)设总利润为W元,则W=(140-a)y+130(200-y),即w=(10-a)y+3.
    ①当0<a<10时,10-a>0,W随y增大而增大,
    ∴当y=2时,W有最大值,此时购进甲种服装2件,乙种服装1件.
    ②当a=10时,(2)中所有方案获利相同,所以按哪种方案进货都可以.
    ③当10<a<20时,10-a<0,W随y增大而减小,
    ∴当y=70时,W有最大值,此时购进甲种服装70件,乙种服装130件.
    18、-2<x≤3,数轴上表示见解析.
    【解析】
    根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
    【详解】
    解: ,
    解①得,x>-2,
    解②得,x≤3,
    则不等式组的解集为-2<x≤3,
    在数轴上表示为:

    故答案为:-2<x≤3,数轴上表示见解析.
    本题考查一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
    【详解】
    ∵,且是整数,
    ∴是整数,即1n是完全平方数;
    ∴n的最小正整数值为1.
    故答案为:1.
    主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
    20、6
    【解析】
    根据平均数的定义,即可求解.
    【详解】
    根据题意,得
    解得
    故答案为6.
    此题主要考查平均数的求解,熟练掌握,即可解题.
    21、-0.1
    【解析】
    试题解析:原式=0.4-0.7=-0.1.
    故答案为:-0.1.
    22、m>﹣5且m≠0
    【解析】
    先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.
    【详解】
    去分母,得m=x-5,
    即x=m+5,
    ∵方程的解是正数,
    ∴m+5>0,即m>-5,
    又因为x-5≠0,
    ∴m≠0,
    则m的取值范围是m>﹣5且m≠0,
    故答案为:m>﹣5且m≠0.
    本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.
    23、中位数.
    【解析】
    参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.
    【详解】
    由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.
    故答案为中位数.
    本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
    二、解答题(本大题共3个小题,共30分)
    24、OE=cm
    【解析】
    根据菱形的性质及三角形中位线定理解答.
    【详解】
    ∵ABCD是菱形,∴OA=OC,OB=OD,OB⊥OC.
    又∵AC=8cm,BD=6cm,∴OA=OC=4cm,OB=OD=3cm.
    在直角△BOC中,由勾股定理得:BC5(cm).
    ∵点E是AB的中点,∴OE是△ABC的中位线,∴OEcm.
    本题考查了菱形的性质及三角形中位线定理.求出菱形的边长是解题的关键.
    25、(1)王师傅单独整理这批实验器材需要80分钟.(2)李老师至少要工作1分钟.
    【解析】
    (1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;
    (2)根据王师傅的工作时间不能超过30分钟,列出不等式求解.
    【详解】
    解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,
    由题意,得:20(+)+20×=1,
    解得:x=80,
    经检验得:x=80是原方程的根.
    答:王师傅单独整理这批实验器材需要80分钟.
    (2)设李老师要工作y分钟,
    由题意,得:(1﹣)÷≤30,
    解得:y≥1.
    答:李老师至少要工作1分钟.
    考点:分式方程的应用;一元一次不等式的应用.
    26、 (1)330;660 (2)答案见解析(3) 日销售利润不低于640元的天数共有11天,试销售期间,日销售最大利润是720元.
    【解析】
    (1)340﹣(24﹣22)×5=330(件),
    330×(8﹣6)=660(元).
    (2)设线段OD所表示的y与x之间的函数关系式为y=kx,
    将(17,340)代入y=kx中,
    340=17k,解得:k=20,
    ∴线段OD所表示的y与x之间的函数关系式为y=20x.
    根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+1.
    联立两线段所表示的函数关系式成方程组,
    得,解得,
    ∴交点D的坐标为(18,360),
    ∴y与x之间的函数关系式为y=.
    (3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,
    解得:x≥16;
    当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+1)≥640,
    解得:x≤2.
    ∴16≤x≤2.
    2﹣16+1=11(天),
    ∴日销售利润不低于640元的天数共有11天.
    ∵点D的坐标为(18,360),
    ∴日最大销售量为360件,
    360×2=720(元),
    ∴试销售期间,日销售最大利润是720元.
    考点:一次函数的应用.
    题号





    总分
    得分

    相关试卷

    2024年湖北省黄冈实验中学九上数学开学检测试题【含答案】:

    这是一份2024年湖北省黄冈实验中学九上数学开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省巴东县数学九年级第一学期开学综合测试模拟试题【含答案】:

    这是一份2024年湖北省巴东县数学九年级第一学期开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省恩施州巴东县数学九年级第一学期开学质量检测试题【含答案】:

    这是一份2024-2025学年湖北省恩施州巴东县数学九年级第一学期开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map