|试卷下载
终身会员
搜索
    上传资料 赚现金
    黑龙江省哈尔滨市南岗区第十七中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】
    立即下载
    加入资料篮
    黑龙江省哈尔滨市南岗区第十七中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】01
    黑龙江省哈尔滨市南岗区第十七中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】02
    黑龙江省哈尔滨市南岗区第十七中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省哈尔滨市南岗区第十七中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】

    展开
    这是一份黑龙江省哈尔滨市南岗区第十七中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)化简的结果是( )
    A.9B.-3C.D.3
    2、(4分)一天早上小华步行上学,他离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开.为了不迟到,小华跑步到了学校,则小华离学校的距离y与时间t之间的函数关系的大致图象是( )
    A.B.C.D.
    3、(4分)如图,在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED。正确的是( )
    A.②③B.②③④C.③④D.①②③④
    4、(4分)如图,中,,,平分交于,若,则的面积为( )
    A.B.C.D.
    5、(4分)如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处,当为直角三角形时,的长为( )
    A.3B.C.2或3D.3或
    6、(4分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
    A.B.C.D.
    7、(4分)已知关于的分式方程无解,则的值为( )
    A.B.C.D.或
    8、(4分)已知一个直角三角形的两边长分别为3和4,则第三边长为( )
    A.5B.7C.D.或5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.
    10、(4分)的整数部分是a,小数部分是b,则________.
    11、(4分)如图所示,数轴上点A所表示的数为a,则a的值是____.
    12、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=3,则AF的长为_.
    13、(4分)如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,,,将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E. 点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边,则符合条件的点M的坐标为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,为美化校园环境,某校计划在一块长为100米,宽为60米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.
    (1)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;
    (2)如果通道宽(米)的值能使关于的方程有两个相等的实数根,并要求修建的通道的宽度不少于5米且不超过12米,求出此时通道的宽.
    15、(8分)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“快乐分式”.如:,则 是“快乐分式”.
    (1)下列式子中,属于“快乐分式”的是 (填序号);
    ① ,② ,③ ,④ .
    (2)将“快乐分式”化成一个整式与一个分子为常数的分式的和的形式为: = .
    (3)应用:先化简 ,并求x取什么整数时,该式的值为整数.
    16、(8分)如图,图1中ΔABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF=AE,连接BE,EF.

    图1 图2
    (1)求证:BE=EF;
    (2)若将DE从中位线的位置向上平移,使点D、E分别在线段AB、AC上(点E与点A不重合),其他条件不变,如图2,则(1)题中的结论是否成立?若成立,请证明;若不成立.请说明理由.
    17、(10分)甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S(千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题:
    (1)甲、乙两车行驶时的速度分别为多少?
    (2)乙车出发多少分钟后第一次与甲车相遇?
    (3)甲车中途因故障停止行驶的时间为多少分钟?
    18、(10分)如图,点的纵坐标为,过点的一次函数的图象与正比例函数的图象相交于点.
    (1)求该一次函数的解析式.
    (2)若该一次函数的图象与轴交于点,求的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,将5个边长都为4cm的正方形按如图所示的方法摆放,点A、B、C、D是正方形的中心,则正方形重叠的部分(阴影部分)面积和为_____.
    20、(4分)如图是一辆慢车与一辆快车沿相同路线从地到地所行的路程与时间之间的函数图象,已知慢车比快车早出发小时,则、两地的距离为________ .
    21、(4分)如图,矩形ABCD中,,,把矩形ABCD绕点A顺时针旋转,当点D落在射线CB上的点P处时,那么线段DP的长度等于_________.
    22、(4分)如果a-b=2,ab=3,那么a2b-ab2=_________;
    23、(4分)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:D,E分别为△ABC的边AB,AC的中点.求证:DE∥BC,且DE=BC
    25、(10分)已知一次函数.
    (1)画出该函数的图象;
    (2)若该函数图象与轴,轴分別交于、两点,求、两点的坐标.
    26、(12分)如图,在矩形纸片中,,.将矩形纸片折叠,使点与点重合,求折痕的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据算术平方根的性质,可得答案.
    【详解】
    解:,故D正确,
    故选:D.
    本题考查了算术平方根的计算,熟练掌握算术平方根的性质是解题关键.
    2、B
    【解析】
    根据题意可得小华步行上学时小华离学校的距离减小,而后离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿时小华离学校的距离增大,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开距离不变,小华跑步到了学校时小华离学校的距离减小直至为1.
    【详解】
    解:根据题意可得小华步行上学时小华离学校的距离减小,而后离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿时小华离学校的距离增大,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开距离不变,小华跑步到了学校时小华离学校的距离减小直至为1.
    故选:B.
    本题考查函数的图象,关键是根据题意得出距离先减小再增大,然后不变后减小为1进行判断.
    3、B
    【解析】
    分析:求出OA=OC=OD=BD,求出∠ADB=30°,求出∠ABO=60°,得出等边三角形AOB,求出AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,根据以上结论推出即可.
    详解:∵∠AFC=135°,CF与AH不垂直,
    ∴点F不是AH的中点,即AF≠FH, ∴①错误;
    ∵四边形ABCD是矩形,
    ∴∠BAD=90°, ∵AD=,AB=1, ∴tan∠ADB= ,
    ∴∠ADB=30°, ∴∠ABO=60°,
    ∵四边形ABCD是矩形,
    ,,,,∴AO=BO,
    ∴△ABO是等边三角形,
    ∴AB=BO,,
    ∵AF平分∠BAD,
    ,
    ,
    ,
    ,
    ,
    ,
    ,∴②正确;
    ,,
    ,
    ,
    ,
    ,
    ,
    ,
    ,
    ∴③正确;
    ∵△AOB是等边三角形,
    ,
    ∵四边形ABCD是矩形,
    ,OB=OD,AB=CD,
    ∴DC=OC=OD,
    ,
    ,
    即BE=3ED, ∴④正确;
    即正确的有3个,
    故选C.
    点睛:本题考查了矩形的性质,平行线的性质,角平分线定义,定义三角形的性质和判定,等边三角形的性质和判定等知识点的综合运用,难度偏大,对学生提出较高的要求.
    4、A
    【解析】
    由平分可得,故BD=CD=2,利用30°的Rt可得AD=BD=1可得AC=AD+CD=3,根据勾股定理可得:AB= 计算即可得的面积.
    【详解】
    ∵中,,

    ∵平分


    ∴BD=CD=2
    ∵,,
    ∴AD=BD=1
    ∴AC=AD+CD=1+2=3
    根据勾股定理可得:AB=

    故选:A
    本题考查了勾股定理及30°的直角三角形所对的直角边是斜边的一半及三角形的面积公式,掌握勾股定理及30°的直角三角形的性质是解题的关键.
    5、D
    【解析】
    当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
    ②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
    【详解】
    当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如答图1所示。
    连结AC,
    在Rt△ABC中,AB=3,BC=4,
    ∴AC=
    ∵∠B沿AE折叠,使点B落在点B′处,
    ∴∠AB′E=∠B=90°,
    当△CEB′为直角三角形时,只能得到∠EB′C=90°,
    ∴点A. B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
    ∴EB=EB′,AB=AB′=3,
    ∴CB′=5−3=2,
    设BE=x,则EB′=x,CE=4−x,
    在Rt△CEB′中,
    ∵EB′2+CB′2=CE2,
    ∴x2+22=(4−x)2,解得x=,
    ∴BE=;
    ②当点B′落在AD边上时,如答图2所示。
    此时ABEB′为正方形,
    ∴BE=AB=3.
    综上所述,BE的长为或3.
    故选:D.
    此题主要考查矩形的折叠问题,解题的关键是根据题意分情况讨论.
    6、B
    【解析】
    △ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
    【详解】
    解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
    当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
    符合题意的函数关系的图象是B;
    故选B.
    本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
    7、D
    【解析】
    分式方程去分母转化为整式方程,由分式方程无解得到x−3=0,确定出x的值,代入整式方程计算即可求出m的值.
    【详解】
    解:去分母得:3−2x−9+mx=−x+3,
    整理得:(m−1)x=9,
    当m−1=0,即m=1时,该整式方程无解;
    当m−1≠0,即m≠1时,由分式方程无解,得到x−3=0,即x=3,
    把x=3代入整式方程得:3m−3=9,
    解得:m=4,
    综上,m的值为1或4,
    故选:D.
    此题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
    8、D
    【解析】
    分两种情况:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为,故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    ∵∠ACB=90°,D为AB的中点,
    ∴CD=AB=×6=1.
    故答案为1.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
    10、2
    【解析】
    因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.
    【详解】
    因为1<<2,
    所以a=1,b=−1.
    故(1+)(-1)=2,
    故答案为:2.
    此题考查估算无理数的大小,解题关键在于得到的整数部分a.
    11、
    【解析】
    根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
    【详解】
    ∵直角三角形的两直角边为1,2,
    ∴斜边长为,
    那么a的值是:﹣.
    故答案为.
    此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
    12、1.
    【解析】
    先利用直角三角形斜边中线性质求出AB,在Rt△ABF中,利用直角三角形10度角所对的直角边等于斜边的一半,求出AF即可解决问题.
    【详解】
    解:∵AF⊥BC,
    ∴∠AFB=90°,
    在Rt△ABF中,D是AB的中点,DF=1,
    ∴AB=2DF=6,
    又∵E是AC的中点,
    ∴DE∥BC,
    ∵∠ADE=10°,
    ∴∠ABF=∠ADE=10°,
    ∴AF=AB=1,
    故答案为:1.
    本题考查三角形中位线性质、含10度角的直角三角形性质、直角三角形斜边上的中线性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.
    13、或.
    【解析】
    由B、D坐标可求得直线BD的解析式,当M点在x轴上方时,则有CM∥AN,则可求出点M的坐标,代入直线BD解析式可求得M点的坐标,当M点在x轴下方时,同理可求得点M点的纵坐标,则可求得M点的坐标;
    【详解】
    ∵,,
    ∴OA=2,OB=4,
    ∵将△OAB绕O点顺时针旋转90°得到△OCD,
    ∴OC=OA=2,OD=OB=4,AB=CD,
    可知,,
    设直线BD的解析式为,把B、D两点的坐标代入得:,
    解得,
    ∴直线BD的解析式为,
    当M点在x轴上方时,则有CM∥AN,即CM∥x轴,
    ∴点M到x轴的距离等于点C到x轴的距离,
    ∴M点的纵坐标为2,
    在中,令,可得,
    ∴,
    当M点在x轴下方时,M点的纵坐标为-2,
    在中,令,可得,
    ∴,
    综上所述,M的坐标为或.
    本题主要考查了一次函数的综合,准确利用知识点是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)5米;(2)1米;
    【解析】
    (1)先用含a的式子先表示出花圃的长和宽后利用矩形面积公式,再根据通道所占面积是整个长方形空地面积的,列出方程进行计算即可;
    (2)根据方程有两个相等的实数根求得a的值,即可解答;
    【详解】
    (1)由图可知,花圃的面积为(10-2a)(60-2a)
    由已知可列式:10×60-(10-2a)(60-2a)=×10×60,
    解得:a1=5,a2=75(舍去),所以通道的宽为5米;
    (2)∵方程x2-ax+25a-150=0有两个相等的实根,
    ∴△=a2-25a+150=0,解得:a1=1,a2=15,
    ∵5≤a≤12,
    ∴a=1.
    ∴通道的宽为1米.
    此题考查一元二次方程的应用,解题的关键是表示出花圃的长和宽,属于中档题,难度不算大.
    15、 (1)①②③;(2);(3),x=-3
    【解析】
    (1)根据快乐分式的定义分析即可;
    (2)根据快乐分式的定义变形即可;
    (3)先化简,再根据快乐分式的定义变形,然后再根据x的值和分式的值为整数讨论即可.
    【详解】
    解:(1)①,是快乐分式 ,
    ② ,是快乐分式,
    ③ ,是快乐分式,
    ④ 不是分式,故不是快乐分式.
    故答案为:①②③ ;
    (2) 原式= = ;
    (3)原式=
    = =
    = =
    ∵当或 时,分式的值为整数,
    ∴x的值可以是0或或1或,
    又∵分式有意义时,x的值不能为0、1、,

    本题考查了新定义运算,以及分式的混合运算.熟练掌握运算法则及快乐分式的定义是解本题的关键.
    16、 (1)证明见解析;(2)结论仍然成立;(3)
    【解析】
    (1)利用等边三角形的性质以及三线合一证明得出结论;
    (2)由中位线的性质、平行线的性质,等边三角形的性质以及三角形全等的判定与性质证明
    【详解】
    (1)证明:∵ΔABC是等边三角形,
    ∴∠ABC=∠ACB=,AB=BC=AC
    ∵DE是中位线,
    ∴E是AC的中点,
    ∴BE平分∠ABC,AE=EC
    ∴∠EBC=∠ABC=
    ∵AE=CF,
    ∴CE=CF,
    ∴∠CEF=∠F
    ∵∠CEF+∠F=∠ACB=,
    ∴∠F=,
    ∴∠EBC=∠F,
    ∴BE=EF
    (2)结论仍然成立.
    ∵DE是由中位线平移所得;
    ∴DE//BC,
    ∴∠ADE=∠ABC=,∠AED=∠ACB=,
    ∴ΔADE是等边三角形,
    ∴DE=AD=AE,
    ∵AB=AC,
    ∴BD=CE,
    ∵AE=CF,
    ∴DE=CF
    ∵∠BDE=-∠ADE=,∠FCE=-∠ACB=,
    ∴∠FCE=∠EDB,
    ∴ΔBDE≌ΔECF,
    ∴BE=EF
    此题考查等边三角形的判定与性质,三角形中位线定理和全等三角形的判定与性质,解题关键在于利用三线合一证明得出结论
    17、(1)甲车的速度是千米每分钟,乙车的速度是1千米每分钟;
    (2)乙车出发20分钟后第一次与甲车相遇;
    (3)甲车中途因故障停止行驶的时间为25分钟.
    【解析】
    (1)分别根据速度=路程÷时间列式计算即可得解;
    (2)设甲车离A地的距离S与时间t的函数解析式为s=kt+b(k≠0),利用待定系数法求出乙函数解析式,再令s=20求出相应的t的值,然后求解即可;
    (3)求出甲继续行驶的时间,然后用总时间减去停止前后的时间,列式计算即可得解.
    【详解】
    解:(千米/分钟),
    ∴甲车的速度是千米每分钟.
    (千米/分钟),
    ∴ 乙车的速度是1千米每分钟.
    (2)设甲车离A地的距离S与时间t的函数解析式为:()
    将点(10,0)(70,60)代入得:
    解得:,即
    当y=20时,解得t=30,
    ∵甲车出发10分钟后乙车才出发,
    ∴ 30-10=20分钟,乙车出发20分钟后第一次与甲车相遇.
    (3)∵(分钟)
    ∵ 70-30-15=25(分钟),
    ∴ 甲车中途因故障停止行驶的时间为25分钟.
    18、(1);(2).
    【解析】
    (1)利用正比例函数,求得点B坐标,再利用待定系数法即可求得一次函数解析式;
    (2)利用一次函数解析式求得点D坐标,即可求的面积.
    【详解】
    (1)把代入中,得,
    所以点的坐标为,
    设一次函数的解析式为,
    把和代入,得,解得,
    所以一次函数的解析式是;
    (2)在中,令,则,
    解得,则的坐标是,
    所以.
    本题为考查一次函数基础题,考点涉及利用待定系数法求一次函数解析式以及求一次函数与坐标轴交点坐标,熟练掌握一次函数相关知识点是解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、16cm2
    【解析】
    根据正方形的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.
    【详解】
    解:∵点A、B、C、D分别是四个正方形的中心
    ∴每一个阴影部分的面积等于正方形的
    ∴正方形重叠的部分(阴影部分)面积和
    故答案为:
    本题考查了正方形的性质以及与面积有关的计算,不规则图形的面积可以看成规则图形面积的和或差,正确理解运用正方形的性质是解题的关键.
    20、1
    【解析】
    分析:根据数量关系“路程=速度×时间”结合函数图象,即可得出v快=v慢,设两车相遇的时间为t,根据数量关系“路程=速度×时间”即可得出t•v慢=(t-2)•v快=276,解之即可得出t与v慢的值,将慢车的速度代入s=18v慢中即可求出A、B两地的距离.
    详解:
    根据函数图象可知:s=(14-2)v快=18v慢,
    ∴v快=v慢.
    设两车相遇的时间为t,
    根据函数图象可知:t•v慢=(t-2)•v快=276,
    解得:t=6,v慢=46,
    ∴s=18v慢=18×46=1.
    故答案为1.
    点睛:考查了函数的图象以及解一元一次方程,根据数量关系结合函数图象找出快、慢两车速度间的关系是解题的关键.
    21、
    【解析】
    【分析】画图,分两种情况:点P在B的右侧或左侧.根据旋转和矩形性质,运用勾股定理,分别求出BP和PC,便可求出PD.
    【详解】(1)如图,当P在B的右侧时,由旋转和矩形性质得:
    AP=AD=5,AB=CD=3,
    在直角三角形ABP中,BP=,
    所以,PC=BC-BP=5-4=1,
    在直角三角形PDC中,PD=,
    (2)如图,当点P在B的左侧时,由旋转和矩形性质得:
    AP=AD=5,AB=CD=3,
    在直角三角形APB中,PB=,
    所以,PC=BC+PB=5+4=9,
    在在直角三角形PDC中,PD=,
    所以,PD的长度为
    故答案为
    【点睛】本题考核知识点:矩形,旋转,勾股定理. 解题关键点:由旋转和矩形性质得到边边相等,由勾股定理求边长.
    22、6
    【解析】
    首先将a2b-ab2提取公因式,在代入计算即可.
    【详解】
    解:
    代入a-b=2,ab=3
    则原式=
    故答案为6.
    本题主要考查因式分解的计算,关键在于提取公因式,这是基本知识点,应当熟练掌握.
    23、2
    【解析】
    根据中位数和众数的定义分析可得答案.
    【详解】
    解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.
    所以这5个数据分别是x,y,2,1,1,且x<y<2,
    当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,
    所以这组数据可能的最大的和是0+1+2+1+1=2.
    故答案为:2.
    主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析
    【解析】
    延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.
    【详解】
    证明:延长DE到F,使EF=DE.连接CF.
    在△ADE和△CFE中,
    ∵AE=CE,∠AED=∠CEF,DE=FE,
    ∴△ADE≌△CFE.
    ∴AD=CF,∠A=∠ECF
    ∴AD∥CF,
    即BD∥CF.
    又∵BD=AD=CF,
    ∴四边形DBCF是平行四边形.
    ∴DE∥BC,且DF=BC.
    ∴DE=DF=BC.
    本题考查三角形的中位线定理的证明,解题关键是掌握等三角形的判定和全等三角形的性质以及平行四边形的判定和性质.
    25、(1)答案见解析;(2),.
    【解析】
    (1)根据描点法,可得函数图象;
    (2)根据自变量与函数值的对应关系,可得答案
    【详解】
    解:(1)列表:
    描点、连线得到一次函数的图象如图所示:
    (2)在中,令得,令得

    本题考查了一次函数图象,利用描点法画函数图象,利用自变量与函数值的对应关系求出相应的交点坐标.
    26、.
    【解析】
    过点G作GE⊥BC于E,根据轴对称的性质就可以得出BH=DH,由勾股定理就可以得出GH的值.
    【详解】
    解:如图,∵四边形与四边形关于对称,
    ∴四边形四边形,
    ∴,,,.
    ∵四边形是矩形,
    ∴,,,,
    ∴,
    ∴,
    ∴.
    ∴.
    ∵,,
    ∴,.
    设,则,由勾股定理,得

    解得:.
    ∴,
    ∴,
    ∴.
    在中,由勾股定理,得
    .
    答:.
    本题考查了矩形的性质的运用,轴对称的性质的运用,勾股定理的运用,解答时根据轴对称的性质求解是关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    黑龙江省哈尔滨市第十七中学2025届数学九年级第一学期开学考试模拟试题【含答案】: 这是一份黑龙江省哈尔滨市第十七中学2025届数学九年级第一学期开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年黑龙江省哈尔滨市南岗区萧红中学九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市南岗区萧红中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map