黑龙江省哈尔滨六十九2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是( )
A.B.C.D.
2、(4分)如图,与的形状相同,大小不同,是由的各顶点变化得到的,则各顶点变化情况是( )
A.横坐标和纵坐标都乘以2B.横坐标和纵坐标都加2
C.横坐标和纵坐标都除以2D.横坐标和纵坐标都减2
3、(4分)若分式无意义,则x的值为( )
A.B.C.D.
4、(4分)如图,等边三角形的边长为4,点是△ABC的中心,,的两边与分别相交于,绕点顺时针旋转时,下列四个结论正确的个数是( )
①;②;③;④周长最小值是9.
A.1个B.2个C.3个D.4个
5、(4分)如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为( )
A.y=-x+2B.y=x+2C.y=x-2D.y=-x-2
6、(4分)某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y(元)与销售量x(件)的函数关系如图所示,则降价后每件商品的销售价格为( )
A.12元B.12.5元C.16.25元D.20元
7、(4分)若点P(a,2)在第二象限,则a的值可以是( )
A.B.0C.1D.2
8、(4分)反比例函数 y=的图象如图所示,点 M 是该函数图象上的一点,MN 垂直于 x 轴,垂足为 N,若 S△MON=,则 k 的值为( )
A.B.C.3D.-3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知菱形的两条对角线长分别为4和9,则菱形的面积为_____.
10、(4分)若式子 有意义,则x的取值范围为___________.
11、(4分)如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离AE、CF分别是1cm、2cm,则线段EF的长为 ______cm.
12、(4分)如图,在平面直角坐标系中,的顶点在轴正半轴上,点在反比例函数的图象上.若是的中线,则的面积为_________.
13、(4分)小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:
(1)
(2)2x2﹣2x﹣1=0
15、(8分)小红同学经常要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉开5m后,发现这时绳子的下端正好距地面1m,学校旗杆的高度是( )
A.21mB.13mC.10mD.8m
16、(8分)如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A、B两点,AB=5,OA:OB =3:4.
(1)求直线l的表达式;
(2)点P是轴上的点,点Q是第一象限内的点.若以A、B、P、Q为顶点的四边形是菱形,请直接写出Q点的坐标.
17、(10分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.
(1)求证:AE=2CE;
(2)连接CD,请判断△BCD的形状,并说明理由.
18、(10分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.、(1)求△AOB的面积;(2)求不等式kx+b﹣<0的解集(请直接写出答案).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若有意义,则的取值范围是_______
20、(4分)将正比例函数y=﹣2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是_____.
21、(4分)已知为实数,且,则______.
22、(4分)如图,已知点A的坐标为(5,0),直线y=x+b(b≥0)与y轴交于点B,连接AB,∠α=75°,则b的值为_____.
23、(4分)计算:(−)2=________;=_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在矩形ABCD中,,.将矩形ABCD沿过点C的直线折叠,使点B落在对角线AC上的点E处,折痕交AB于点F.
(1)求线段AC的长.
(2)求线段EF的长.
(3)点G在线段CF上,在边CD上存在点H,使以E、F、G、H为顶点的四边形是平行四边形,请画出,并直接写出线段DH的长.
25、(10分)如图,已知□ABCD中,点E、F分别在AD、BC上,且EF垂直平分对角线AC,垂足为O,求证:四边形AECF是菱形。
26、(12分)如图,中,、两点在对角线上,且.
求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
通过点经过四边形各个顶点,观察图象的对称趋势问题可解.
【详解】
、选项路线都关于对角线对称,因而函数图象应具有对称性,故、错误,对于选项点从到过程中的长也存在对称性,则图象前半段也应该具有对称特征,故错误.
故选:.
本题动点问题的函数图象,考查学生对动点运动过程中所产生函数图象的变化趋势判断.解答关键是注意动点到达临界前后的图象变化.
2、A
【解析】
根据题意得:△OAB∽△OAB,然后由相似三角形的对应边成比例,求得答案.
【详解】
根据题意得:△O AB∽△OAB,
∵O(0,0),A(2,1),B(1,3),B点的坐标为(2,6),A(4,2)
∴横坐标和纵坐标都乘以2.
故选A.
此题考查坐标与图形性质,相似三角形的性质,解题关键在于利用相似三角形的对应边成比例
3、C
【解析】
根据分式无意义的条件即可求出答案.
【详解】
由题意可知:x-1=0,
即x=1,分式无意义,
故选:C.
此题考查分式无意义的条件,解题的关键是熟练运用分式无意义的条件,本题属于基础题型.
4、B
【解析】
首先连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,利用全等三角形的对应边相等可对①进行判断;再利用S =S 得到四边形ODBE的面积= S ,则可对③进行判断,然后作OH⊥DE,则DH=EH,计算出S = OE,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断,
接下来由△BDE的周长=BC+DE=4+DE=4+OE,结合垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.
【详解】
连接OB,OC,如图.
∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°.
∵点O是△ABC的中心,
∴OB=OC,OB. OC分别平分∠ABC和∠ACB,
∴∠ABO=∠OBC=∠OCB=30°,
∴∠BOC=120°,即∠BOE+∠COE=120°,
而∠DOE=120°,即∠BOE+∠BOD=120°,
∴∠BOD=∠COE.
在△BOD和△COE中,∠BOD=∠COE,BO=CO,∠OBD=∠OCE,
∴△BOD≌△COE,
∴BD=CE,OD=OE,所以①正确;
∴S =S ,
∴四边形ODBE的面积=S = S =× ×4 = ,所以③正确;
作OH⊥DE,如图,则DH=EH,
∵∠DOE=120°,
∴∠ODE=∠OEH=30°.
∴OH=OE,HE=OH= OE,
∴DE= OE,
∴S△ODE= ··OE· OE= OE,
即S 随OE的变化而变化,而四边形ODBE的面积为定值,
∴S≠S ,所以②错误;
∵BD=CE,
∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+ OE,
当OE⊥BC时,OE最小,△BDE的周长最小,此时OE= ,
∴△BDE周长的最小值=4+2=6,所以④错误.
故选B.
此题考查旋转的性质、等边三角形的性质和全等三角形的判定与性质,解题关键是牢记旋转前、后的图形全等.
5、B
【解析】
解:设一次函数的解析式y=kx+b(k≠0),
∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,
∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).
把A(0,1),B(-1,1)的坐标代入一次函数的解析式y=kx+b
得:,解得,
该一次函数的表达式为y=x+1.
故选B.
6、B
【解析】
首先根据题意求出降价后的函数关系式,其斜率即为每件商品的销售价格,即可得解.
【详解】
根据题意,设降价后的函数解析式为
由图像可知,该函数过点(40,800)和(80,1300),代入得
解得
∴
故降价后每件商品的销售价格为12.5元,
故答案为B.
此题主要考查一次函数的实际应用,熟练掌握,即可解题.
7、A
【解析】
根据第二象限内点的横坐标是负数判断.
【详解】
解:∵点P(a,1)在第二象限,
∴a<0,
∴-1、0、1、1四个数中,a的值可以是-1.
故选:A.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
8、D
【解析】
根据反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积即可解答.
【详解】
解:∵S△MON=,
∴|k|=,
∴
∵图象过二、四象限,
∴反比例函数的系数为k=-1.
故选:D.
本题主要考查反比例函数的比例系数k的几何意义.反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
利用菱形的面积等于对角线乘积的一半求解.
【详解】
菱形的面积=×4×9=1.
故答案为1.
此题考查菱形的性质,难度不大
10、x≥5
【解析】
根据二次根式的性质,即可求解.
【详解】
因为式子有意义,
可得:x-5≥1,
解得:x≥5,
故选A.
主要考查了二次根式的意义.二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于1.
11、3
【解析】
∵四边形ABCD为正方形,
∴AB=BC,∠ABC=90°.
∵AE⊥l,CF⊥l,
∴∠E=∠F=90°,∠EAB+∠ABE=90°,∠FBC+∠BCF=90°.
∵∠ABE+∠ABC+∠FBC=180°,
∴∠ABE+∠FBC=90°,
∴∠EAB=∠FBC.
在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴BE=CF=2cm,BF=AE=1cm,
∴EF=BE+BF=2+1=3cm.
故答案为3.
12、6
【解析】
过点作轴于点E,过点作轴于点D,设,得到点B的坐标,根据中点的性质,得到OA和BD的长度,然后根据三角形面积公式求解即可.
【详解】
解:过点作轴于点,过点作轴于点.
设,
∵为的中线,点A在x轴上,
∴点C为AB的中点,
∴点B的纵坐标为,
∴,解得:,
,
∴,
∵BD∥CE,点C是中点,
∴点E是AD的中点,
∴,
∴,
∵,
故答案为:6.
本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,三角形中线的定义,以及三角形中位线的性质,求得BD,OA的长是解题关键.
13、1
【解析】
将这7个数按大小顺序排列,找到最中间的数即为中位数.
【详解】
解:这组数据从大到小为:27,1,1,1,42,42,46,
故这组数据的中位数1.
故答案为1.
此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算,难度一般.
三、解答题(本大题共5个小题,共48分)
14、(1)x=15;(2)x1=,x2=.
【解析】
(1)先把分式方程转化成整式方程,求出方程的解即可;
(2)先求出b2﹣4ac的值,再代入公式求出即可.
【详解】
解:(1)方程两边都乘以x﹣7得:x+1=2(x﹣7),
解得:x=15,
检验:当x=15时,x﹣7≠0,
所以x=15是原方程的解,
即原方程的解是x=15;
(2)2x2﹣2x﹣1=0,
b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,
x=,
x1=,x2=.
本题考查了分式方程及一元二次方程的解法,解题的关键是熟悉分式方程及一元二次方程的解法,注意分式方程必须要检验.
15、B
【解析】
根据题意设旗杆的高AB为x米,则绳子AC的长为x米,在Rt△ACH利用勾股定理构建方程即可解决问题.
【详解】
如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=BH=1米,CH=5米,设AB=AC=x米.
在Rt△ACH中,∵AC2=AH2+CH2,
∴x2=52+(x-1)2,
∴x=13,
∴AB=13(米),
故选B.
此题考查了勾股定理在实际问题中的应用,能够正确理解题意继而构造直角三角形是解决本题的关键,难度一般.
16、(1)y=+4 (2)(3,5)或(3,)
【解析】
(1)首先根据已知条件以及勾股定理求得OA、OB的长度,即求得A、B的坐标,利用待定系数法即可求解;
(2)分P在B点的上边和在B的下边两种情况画出图形进行讨论,求得Q的坐标.
【详解】
(1)∵OA:OB=3:4,AB=5,
∴根据勾股定理,得OA=3,OB=4,
∵点A、B在x轴、y轴上,
∴A(3,0),B(0,4),
设直线l表达式为y=kx+b(k≠0),
∵直线l过点A(3,0),点B(0,4),
∴ ,
解得 ,
∴直线l的表达式为y=+4;
(2)如图,当四边形BP1AQ1是菱形时,则有BP1=AP1=AQ1,
则有OP1=4-BP1,
在Rt△AOP1中,有AP12=OP12+AO2,
即AQ12=(4-AQ1)2+32,
解得:AQ1=,所以Q1的坐标为(3,);
当四边形BP2Q2A是菱形时,则有BP2 =AQ2=AB=5,
所以Q2的坐标为(3,5),
综上所述,Q点的坐标是(3,5)或(3,).
本题考查了一次函数的性质、勾股定理、菱形的判定与性质,熟练掌握待定系数法、运用分类讨论与数形结合思想是解题的关键.
17、见解析
【解析】
(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得∠ABE=∠A;结合三角形外角的性质可得∠BEC的度数,再在Rt△BCE中结合含30°角的直角三角形的性质,即可证明第(1)问的结论;
(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到∠ABC=60°,至此不难判断△BCD的形状
【详解】
(1)证明:连结BE,如图.
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE.
(2)解:△BCD是等边三角形.
理由如下:
∵DE垂直平分AB,
∴D为AB的中点.
∵∠ACB=90°,
∴CD=BD.
又∵∠ABC=60°,
∴△BCD是等边三角形.
此题考查了线段垂直平分线的性质、30°角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30°角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,
18、(1);(2)﹣4<x<0或x>1
【解析】
(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
(2)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
【详解】
解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),
∴m=1×(﹣4)=﹣4, ∴y=﹣,
将x=﹣4,y=n代入反比例解析式得:n=1,
∴A(﹣4,1),
∴将A与B坐标代入一次函数解析式得:k+b=-4,-4k+b=1,
解得:k=-1,b=-3, ∴y=﹣x﹣3;
在直线y=﹣x﹣3中,当y=0时,x=﹣3,
∴C(﹣3,0),即OC=3,
∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;
(2)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.
本题考查待定系数法求一次函数解析式;待定系数法求反比例函数解析式;反比例函数与图形的面积计算;反比例函数与一次函数的结合交点问题求x的范围,学生们熟练掌握解析一次函数和反比例函数表达式的方法同时观察图象是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式有意义的条件:被开方数为非负数求解即可.
【详解】
解:代数式有意义,
,
解得:.
故答案为:.
本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.
20、y=-2x+1
【解析】
根据上下平移时只需让b的值加减即可,进而得出答案即可.
解:原直线的k= -2,b=0;向上平移1个单位得到了新直线,
那么新直线的k= -2,b=0+1=1.
故新直线的解析式为:y= -2x+1.
故答案为y= -2x+1.
“点睛”此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.
21、或.
【解析】
根据二次根式有意义的条件可求出x、y的值,代入即可得出结论.
【详解】
∵且,∴,∴,∴或.
故答案为:或.
本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x、y的值.
22、
【解析】
设直线与x轴交于点C,由直线BC的解析式可得出 结合可得出,通过解含30度角的直角三角形即可得出b值.
【详解】
设直线与x轴交于点C,如图所示:
∵直线BC的解析式为y=x+b,
∴
∵
∴
当x=0时,y=x+b=b.
在Rt△ABO中, OB=b,OA=5,
∴AB=2b,
∴
∴
故答案为:
考查待定系数法求一次函数解析式, 三角形的外角性质, 含角的直角三角形的性质,勾股定理等,综合性比较强,根据直线解析式得到是解题的关键.
23、5 π-1
【解析】
根据二次根式的性质计算即可.
【详解】
解:.
故答案为:5,π-1.
本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3)见解析,.
【解析】
(1)根据勾股定理计算AC的长;
(2)设EF=x,在Rt△AEF中,由勾股定理列方程可解答;
(3)先正确画图,根据折叠的性质和平行线的性质证明CH=GH可解答.
【详解】
解:(1)∵四边形ABCD矩形,.
在中,;
(2)设EF的长为x.
由折叠,得,,,
,,,
在中,,即,
解得..
(3)如图,∵四边形EFGH是平行四边形,
∴EF∥GH,EF=GH=3,
∴∠EFC=∠CGH,
∵AB∥CD,
∴∠BFC=∠DCF,
由折叠得:∠BFC=∠EFC,
∴∠CGH=∠DCF,
∴CH=GH=3,
∴DH=CD-CH=8-3=1.
故答案为:(1);(2);(3)见解析,.
本题是四边形的综合题目,考查了矩形的性质、折叠的性质、平行四边形的性质、平行线的性质、勾股定理等知识;熟练掌握矩形的性质和折叠的性质,由勾股定理得出方程是解决问题的关键.
25、证明见解析
【解析】
试题分析:先根据垂直平分线的性质得所以∠1=∠2,
∠3=∠4;再结合平行线的性质得出∠1=∠4=∠3,即 利用四条边相等的四边形是菱形即可证明
试题解析:∵EF垂直平分AC,
∴AO=OC,AE=CE,AF=CF,
∴∠1=∠2,∠3=∠4,
又∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠1=∠4=∠3,
∴AF=AE,
∴AE=EC=CF=FA,
∴四边形AECF是菱形.
点睛:菱形的判定:四条边相等的四边形是菱形.
26、见解析
【解析】
证明△ADF≌△CBE,根据全等三角形的对应角相等即可证得∠AFD=∠CEB,进而得出∠AFE=∠CEF,即可得出结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥CB,AD=CB.
∴∠ADF=∠CBE.
在△ABE和△CDF中
∴△ADF≌△CBE(SAS),
∴∠AFD=∠CEB,
∵∠AFE=180°-∠AFD,∠CEF=180°-∠CEB,
∴∠AFE=∠CEF,
∴.
本题考查了平行四边形的性质,全等三角形和平行线的判定,理解同位角相等两直线平行是解题关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年黑龙江省哈尔滨市香坊区第六十九中学数学九年级第一学期开学联考试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市香坊区第六十九中学数学九年级第一学期开学联考试题【含答案】,共19页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省哈尔滨市南岗区萧红中学九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市南岗区萧红中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。