河南省驻马店市遂平县第一初级中学2024年数学九年级第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果分式有意义,则x的取值范围是( )
A.x=﹣3B.x>﹣3C.x≠﹣3D.x<﹣3
2、(4分)如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG最小值为( )
A.B.C.D.
3、(4分)如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的和最小值为( )
A.B.4C.3D.
4、(4分)某区选取了10名同学参加兴隆台区“汉字听取大赛”,他们的年龄(单位:岁)记录如下:
这些同学年龄的众数和中位数分别是( )
A.15,15B.15,16C.3,3D.3,15
5、(4分)如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()
A.1个;B.2个;
C.3个;D.4个.
6、(4分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E,若AB=3,则△AEC的面积为( )
A.3B.1.5C.2D.
7、(4分)二次根式中的取值范围是( )
A.B.C.D.
8、(4分)下列各图中,∠1>∠2的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,P是反比例函数图象上的一点,轴于A,点B,C在y轴上,四边形PABC是平行四边形,则▱PABC的面积是______.
10、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③.则三个结论中一定成立的是____________.
11、(4分)在函数中,自变量的取值范围是__________.
12、(4分)如图,四边形ABCD沿直线AC对折后重合,如果AC,BD交于O,AB∥CD,则结论①AB=CD,②AD∥BC,③AC⊥BD,④AO=CO,⑤AB⊥BC,其中正确的结论是___(填序号).
13、(4分)与向量相等的向量是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分) “母亲节”前夕,某花店用3000元购进了第一批盒装花,上市后很快售完,接着又用4000元购进第二批盒装花.已知第二批所购花的进价比第一批每盒少3元,且数量是第一批盒数的1.5倍.问第一批盒装花每盒的进价是多少元?
15、(8分)已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.
(1)点P在x轴上;
(2)点P的纵坐标比横坐标大3;
(3)点P在过点A(2,-4)且与y轴平行的直线上.
16、(8分)一次函数的图象经过点.
(1)求出这个一次函数的解析式;
(2)求把该函数图象向下平移1个单位长度后得到的函数图象的解析式.
17、(10分)如图,在四边形ABCD中,AB=CD,DE⊥AC,BF⊥AC,垂足分别为E,F,且DE=BF,求证:
(1)AE=CF;
(2)四边形ABCD是平行四边形.
18、(10分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.
(1)小明从中随机抽取一张卡片是足球社团B的概率是 .
(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点A,B分别是反比例函数y=与y=的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k的值为_____.
20、(4分)正比例函数的图象经过点(-1,2),则此函数的表达式为___________.
21、(4分)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.
22、(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E,若AB=8,AD=6,则EC=_____________.
23、(4分)若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,路灯(点)距地面8米,身高1.6米的小明从距路灯的底部(点 )20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了;变长或变短了多少米.
25、(10分)因式分解:
(1)2x3﹣8x;
(2)(x+y)2﹣14(x+y)+49
26、(12分)已知,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据分母不等于零时分式有意义,可得答案.
【详解】
由题意,得:x+1≠0,
解得:x≠﹣1.
故选C.
本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.
2、D
【解析】
如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.证明△ADP∽△DHG,推出∠DHG=∠DAP=定值,推出点G在射线HF上运动,推出当CG⊥HE时,CG的值最小,想办法求出CG即可.
【详解】
如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.
∵DG⊥PG,DH⊥AC,
∴∠DGP=∠DHA,
∵∠DPG=∠DAH,
∴△ADH∽△PDG,
∴,∠ADH=∠PDG,
∴∠ADP=∠HDG,
∴△ADP∽△DHG,
∴∠DHG=∠DAP=定值,
∴点G在射线HF上运动,
∴当CG⊥HE时,CG的值最小,
∵四边形ABCD是矩形,
∴∠ADC=90°,
∴∠ADH+∠HDF=90°,
∵∠DAH+∠ADH=90°,
∴∠HDF=∠DAH=∠DHF,
∴FD=FH,
∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,
∴∠FHC=∠FCH,
∴FH=FC=DF=3,
在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,
∴AC==5,DH=,
∴CH=,
∴EH=,
∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,
∴△CGF≌△HEF(AAS),
∴CG=HE=,
∴CG的最小值为,
故选D.
本题考查旋转变换,矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形核或全等三角形解决问题,属于中考选择题中的压轴题.
3、B
【解析】
由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.
【详解】
解:设BE与AC交于点P',连接BD.
∵点B与D关于AC对称,
∴P'D=P'B,
∴P'D+P'E=P'B+P'E=BE最小.
∵正方形ABCD的面积为16,
∴AB=1,
又∵△ABE是等边三角形,
∴BE=AB=1.
故选:B.
本题考查的是正方形的性质和轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.
4、A
【解析】
根据众数的定义和中位数的定义求解即可,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
解:根据10名学生年龄人数最多的即为众数:15,
根据10名学生,第5,6名学生年龄的平均数即为中位数为:=15,故选A.
本题考查了众数和中位数的定义,解题的关键是牢记定义,并能熟练运用.
5、C
【解析】
根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.
【详解】
解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.
①∵AC⊥BD,∴新的四边形成为矩形,符合条件;
②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.
∵C△ABO=C△CBO,∴AB=BC.
根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;
③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.
∵∠DAO=∠CBO,∴∠ADO=∠DAO.
∴AO=OD.
∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;
④∵∠DAO=∠BAO,BO=DO,
∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,
∴新四边形是矩形.符合条件.
所以①②④符合条件.
故选:C.
本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.
6、D
【解析】
解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,
∴在Rt△ACD中,∠ACD=30°,
即∠DAC=60°,
∴∠DAD′=60°,
∴∠DAE=30°,
∴∠EAC=∠ACD=30°,
∴AE=CE.
在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=.
根据勾股定理得:,
解得:x=2,
∴EC=2,
则S△AEC=EC•AD=.
故选D.
7、D
【解析】
由二次根式有意义的条件得:被开方数为非负数可得答案.
【详解】
解:由有意义,则,解得:.
故选D.
本题考查的是二次根式有意义的条件,掌握被开方数为非负数是解题的关键.
8、D
【解析】
根据等边对等角,对顶角相等,平行线的性质,三角形的一个外角大于任何一个与它不相邻的内角对各选项分析判断后利用排除法求解.
【详解】
解:A、∵AB=AC,∴∠1=∠2,故本选项错误;
B、∠1=∠2(对顶角相等),故本选项错误;
C、根据对顶角相等,∠1=∠3,∵a∥b,∴∠2=∠3,∴∠1=∠2,故本选项错误;
D、根据三角形的外角性质,∠1>∠2,故本选项正确.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6
【解析】
作PD⊥BC,所以,设P(x,y). 由,得平行四边形面积=BC•PD=xy.
【详解】
作PD⊥BC,
所以,设P(x,y).
由,
得平行四边形面积=BC•PD=xy=6.
故答案为:6
本题考核知识点:反比例函数意义. 解题关键点:熟记反比例函数的意义.
10、①③
【解析】
由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=FM,根据直角三角形的性质得到BE=FM,等量代换的EF=BE,故②错误;由于,,于是得到,故③正确.
【详解】
解:∵BF⊥AD,
∴∠AFB=90°,
∵在平行四边形ABCD中,AD∥BC,平行线之间内错角相等,
∴∠AFB=∠FBC=90°,故①正确;
如下图所示,延长FE交BC的延长线于M,
又∵在平行四边形ABCD中,AD∥BC,平行线之间内错角相等,∴∠DFE=∠M,
且CD与MF交于点E,两相交直线对顶角相等,∴∠DEF=∠CEM,
又∵BE平分∠ABC,∴∠ABE=∠EBC,
而平行四边形ABCD中,AB∥CD,平行线之间内错角相等,∴∠CEB=∠ABE,
∴∠ABE=∠EBC=∠CEB,故BCE为等腰三角形,其中BC=CE,
又∵AB=2AD,故CD=2BC=2CE,∴CE=DE,
在DFE与CME中,
,
∴DFE≌CME(AAS),
∴EF=EM=FM,
又∵∠FBM=90°,∴BE=FM,
∴EF=BE,
∵EF≠DE,故②错误;
又∵EF=EM,∴,
∵△DFE≌△CME,∴,
∴,故③正确,
故答案为:①③.
此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,本题需要添加辅助线,构造出全等三角形DFE≌CME,这是解题的关键.
11、x≠2
【解析】
根据分式有意义的条件进行求解即可.
【详解】
由题意得,2x-4≠0,
解得:x≠2,
故答案为:x≠2.
本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
12、①②③④
【解析】
由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA,由平行线的性质可知∠BAC=∠DCA,从而得到∠ACB=∠BAC,故此AB=BC,从而可知四边形ABCD为菱形,最后依据菱形的性质判断即可.
【详解】
由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA.
∵AB∥DC,
∴∠BAC=∠DCA.
∴∠BCA=∠BAC.
∴AB=BC.
∴AB=BC=CD=AD.
∴四边形ABCD为菱形.
∴AD∥BC,AB=CD,AC⊥BD,AO=CO.
故答案为①②③④
本题主要考查的是翻折的性质、菱形的性质和判定、等腰三角形的判定、平行线的性质,证得四边形ABCD为菱形是解题的关键.
13、
【解析】
由于向量,所以.
【详解】
故答案为:
此题考查向量的基本运算,解题关键在于掌握运算法则即可.
三、解答题(本大题共5个小题,共48分)
14、第一批盒装花每盒的进价是27元
【解析】
设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.
【详解】
设第一批盒装花每盒的进价是x元,则第二批盒装花每盒的进价是(x﹣3)元,
根据题意得:1.5×=,
解得:x=27,
经检验,x=27是所列分式方程的解,且符合题意.
答:第一批盒装花每盒的进价是27元.
本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.
15、(1)(6,0);(2)(-12,-9); (3)(2,-2)
【解析】试题分析:(1)让纵坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标-横坐标=3得m的值,代入点P的坐标即可求解;(3)让横坐标为2求得m的值,代入点P的坐标即可求解.
试题解析:
(1))点P在x轴上,故纵坐标为0,所以m-1=0,m=1,点P的坐标(6,0);
(2)因为点P的纵坐标比横坐标大3,故(m -1)-(2m+4)=3,m=-8,点P的坐标(-12,-9);
(3) 点P在过A(2,-4)点,且与y轴平行的直线上,所以点P横坐标与A(2,-4)相同,即2m+4=2,m=-1,点P的坐标(2,-2)
16、(1),(2).
【解析】
(1)把点(-1,2)代入即可求解;
(2)根据一次函数的平移性质即可求解.
【详解】
(1)把点(-1,2)代入
即2=-k+4
解得k=2,
∴一次函数为
(2)把向下平移一个单位得到的函数为
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.
17、(1)见解析;(2)见解析
【解析】
(1)直接利用HL证明Rt△DEC≌Rt△BFA即可;
(2)利用全等三角形的性质结合平行四边形的判定方法分析得出答案.
【详解】
证明:(1)∵DE⊥AC,BF⊥AC,
∴∠DEC=∠BFA=90°,
在Rt△DEC和Rt△BFA中,,
∴Rt△DEC≌Rt△BFA(HL),
∴EC=AF,
∴EC-EF=AF-EF,即AE=FC;
(2)∵Rt△DEC≌Rt△BFA,
∴∠DCE=∠BAF,
∴AB∥DC,
又∵AB=DC,
∴四边形ABCD是平行四边形.
此题主要考查了全等三角形的判定和性质以及平行四边形的判定,正确得出Rt△DEC≌Rt△BFA是解题关键.
18、(1);(2)见解析,.
【解析】
(1)直接根据概率公式求解;
(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.
【详解】
(1)小明从中随机抽取一张卡片是足球社团B的概率=;
(2)列表如下:
由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,
所以小明两次抽取的卡片中有一张是科技社团D的概率为.
本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
设A(m,),则B(﹣mk,),设AB交y轴于M,利用平行线的性质,得到AM和MB的比值,即可求解.
【详解】
解:设A(m,),则B(﹣mk,),设AB交y轴于M.
∵EM∥BC,
∴AM:MB=AE:EC=1:1,
∴﹣m:(﹣mk)=1:1,
∴k=1,
故答案为1.
本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.
20、y=-2x
【解析】
设正比例函数是y=kx(k≠0).利用正比例函数图象上点的坐标特征,将点(-1,2)代入该函数解析式,求得k值即可.
【详解】
设正比例函数是y=kx(k≠0).
∵正比例函数的图象经过点(-1,2),
∴2=-k,
解答,k=-2,
∴正比例函数的解析式是y=-2x;
故答案是:y=-2x.
21、65°.
【解析】
利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.
【详解】
在平行四边形ABCD中,∠A=130°,
∴∠BCD=∠A=130°,∠D=180°-130°=50°,
∵DE=DC,
∴∠ECD=(180°-50°)=65°,
∴∠ECB=130°-65°=65°.
故答案为65°.
22、
【解析】
连接EA,如图,利用基本作图得到MN垂直平分AC,所以EC=EA,设CE=x,则AE=x,DE=8-x,根据勾股定理得到62+(8-x)2=x2,然后解方程求出x即可.
【详解】
解:连接EA,如图,
由作图得到MN垂直平分AC,
∴EC=EA,
∵四边形ABCD为矩形,
∴CD=AB=8,∠D=90°,
设CE=x,则AE=x,DE=8-x,
在Rt△ADE中,62+(8-x)2=x2,解得x=,
即CE的长为.
故答案为.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
23、1:1.
【解析】
根据相似三角形的周长的比等于相似比得出.
【详解】
解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:1,
∴△ABC与△DEF的周长比为1:1.
故答案为:1:1.
本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.
二、解答题(本大题共3个小题,共30分)
24、变短了1.5米.
【解析】
如图,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性质求解.
【详解】
解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,
∴△MAC∽△MOP.
∴,即,
解得,MA=5米;
同理,由△NBD∽△NOP,可求得NB=1.5米,
∴小明的身影变短了5﹣1.5=1.5米.
本题考查相似三角形的应用,掌握相似三角形的判定和性质正确推理计算是解题关键.
25、(1)1x(x+1)(x﹣1);(1)(x+y﹣7)1.
【解析】
(1)首先提取公因式1x,再利用平方差公式完全平方公式分解因式得出答案;
(1)直接利用完全平方公式分解因式得出答案.
【详解】
解:(1)原式=1x(x1﹣4)
=1x(x+1)(x﹣1);
(1)原式=(x+y﹣7)1.
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
26、-.
【解析】
将分式通分、化简,再将已知条件变形,整体代入.
【详解】
解:
= -÷
= -
=-
∵
∴1-
即1-=1-
∴-=-
∴原式=-
本题考查分式的化简,整体代入的思想.
题号
一
二
三
四
五
总分
得分
批阅人
年龄(单位:岁)
13
14
15
16
17
人数
2
2
3
2
1
A
B
C
D
A
(B,A)
(C,A)
(D,A)
B
(A,B)
(C,B)
(D,B)
C
(A,C)
(B,C)
(D,C)
D
(A,D)
(B,D)
(C,D)
河南省驻马店市遂平县2025届数学九上开学监测模拟试题【含答案】: 这是一份河南省驻马店市遂平县2025届数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省商丘市2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份河南省商丘市2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省漯河临颍县联考2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份河南省漯河临颍县联考2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。