河南省西华县2025届九上数学开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数的图象不经过第一象限,且y随x的增大而减小的是( )
A.B.C.D.
2、(4分)某学校改造一个边长为5米的正方形花坛,经规划后,南北方向要缩短x米(0
C.保持不变D.减少了x2平方米
3、(4分)如图,在中,,,分别是斜边上的高和中线,,,则的长为
A.B.4C.D.
4、(4分)13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差B.众数C.平均数D.中位数
5、(4分)在四边形中,对角线,相交于点,,,添加下列条件,不能判定四边形是菱形的是( ).
A.B.C.D.
6、(4分)将直线y=x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是( )
A.,1B.-,1C.-,-1D.,-1
7、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.,,B.6,8,10C.7,24,25D.,3,5
8、(4分)如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为( )cm
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若方程的两根互为相反数,则________.
10、(4分)医学研究发现一种新病毒的直径约为0.000043毫米,这个数0.000043用科学记数法表为
______________.
11、(4分)计算:=_____.
12、(4分)不等式组的解集是x>4,那么m的取值范围是_____.
13、(4分)关于的一元二次方程有实数根,则的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知线段a,b,∠α(如图).
(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作____个.
(2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作_____个,作出满足条件的平行四边形(要求仅用直尺和圆规,保留作图痕迹,不写做法)
15、(8分)如图①,点是正方形内一点,,连结,延长交直线于点.
(1)求证:;
(2)求证:是等腰三角形;
(3)若是正方形外一点,其余条件不变,请你画出图形并猜想(1)和(2)中的结论是否仍然成立.(直接写出结论即可).
16、(8分)如图,已知直线与直线相交于点.
(1)求、的值;
(2)请结合图象直接写出不等式的解集.
17、(10分)已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,
(1)求证:△BCE≌△ACD;
(2)求证:CF=CH;
(3)判断△CFH的形状并说明理由.
18、(10分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.
(1)设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)
(2)若要求总运费不超过9000元,问共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=_____.
20、(4分)若m2﹣n2=6,且m﹣n=2,则m+n=_________
21、(4分)人数相同的八年级甲,乙两班同学在同一次数学单元测试中,班级平均分和方差如下:,,则成绩较为稳定的班级是_______.
22、(4分)甲,乙两车都从A地出发,沿相同的道路,以各自的速度匀速驶向B地.甲车先出发,乙车出发一段时间后追上甲并反超,乙车到达B地后,立即按原路返回,在途中再次与甲车相遇。着两车之间的路程为s(千米),与甲车行驶的时间t(小时)之间的图象如图所示.乙车从A地出发到返回A地需________小时.
23、(4分)有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.
(1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,求证:△DAC∽△CAB.
(2)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB= °
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长.
25、(10分)某班“数学兴趣小组”对函数y=x−2|x|的图象和性质进行了探究,探究过程如下,请补充完整:
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
其中,m=___.
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)探究函数图象发现:
①函数图象与x轴有___个交点,所以对应的方程x−2|x|=0有___个实数根;
②方程x−2|x|=−有___个实数根;
③关于x的方程x−2|x|=a有4个实数根时,a的取值范围是___.
26、(12分)某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.
(1)共需租多少辆客车?
(2)请给出最节省费用的租车方案.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分别分析各个一次函数图象的位置.
【详解】
A. ,图象经过第二、四象限,且y随x的增大而减小;
B. , 图象经过第一、二、三象限;
C. ,图象经过第一、二、四象限;
D. ,图象经过第一、三、四象限;
所以,只有选项A符合要求.
故选A
本题考核知识点:一次函数的性质.解题关键点:熟记一次函数的性质.
2、D
【解析】
根据题意得到改造后花坛的长为(5+x)米,宽为(5-x)米,则其面积为(5+x)(5-x)=(25-x2)平方米,然后根据正方形的面积为52=25平方米可得到
改造后花坛的面积减少了x2平方米.
【详解】
解:根据题意改造后花坛为矩形,其长为(5+x)米,宽为(5-x)米,
所以矩形花坛的面积为(5+x)(5-x)=(25-x2)平方米,
而原正方形面积为52=25平方米,
所以改造后花坛的面积减少了x2平方米.
故选:D
本题考查了平方差公式的几何背景:利用几何面积验证平方差公式,根据题意画出图形,数形结合思想解题是本题的解题关键.
3、C
【解析】
由直角三角形斜边上的中线求得AB的长度,再根据含30°角直角三角形的性质求得AC的长度,最后通过解直角△ACD求得CD的长度.
【详解】
如图,在中,,是斜边上的中线,,
.
,
,.
是斜边上的高,
故选:.
考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.
4、D
【解析】
由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.
【详解】
共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.
我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.
故选D.
本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
5、B
【解析】
由,,证出四边形是平行四边形,
A. ,根据邻边相等的平行四边形,可证四边形是菱形;
B. ,对角线相等的平行四边形是矩形,不能证四边形是菱形;
C. ,根据对角线互相垂直的平行四边形是菱形,可证四边形是菱形;
D. ,证,根据等角对等边可证,即可证得四边形是菱形.
【详解】
,,
四边形是平行四边形,
A. ,是菱形;
B. ,是矩形,不是菱形;
C. ,是菱形;
D. ,
是菱形;
故本题的答案是:B
本题考查了特殊四边形菱形的证明,平行四边形的证明,矩形的证明,注意对这些证明的理解,容易混淆,小心区别对比.
6、D
【解析】
分析:
由已知条件易得,直线过点(0,1),结合直线是由直线向右平移4个单位长度得到的可知直线必过点(4,1),把和点(4,1)代入中解出b的值即可.
详解:
∵在直线中,当时,,
∴直线过点(0,1),
又∵直线是由直线向右平移4个单位长度得到的,
∴,且直线过点(4,1),
∴,解得:,
∴.
故选D.
点睛:“由直线过点(0,1)结合已知条件得到,直线必过点(4,1)”是解答本题的关键.
7、A
【解析】
勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.
【详解】
∵()2+()2=7≠()2,∴,,不能作为直角三角形的三边长.故选A.
本题属于基础应用题,只需熟练掌握勾股定理的逆定理,即可完成.
8、D
【解析】
作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.
【详解】
如下图,连接BD,角AC于点E,
∵四边形ABCD为菱形,
∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,
在Rt△AEB中, AE=3cm,
∴AB==3=2
故选D.
本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据一元二次方程根与系数的关系即可求出答案.
【详解】
∵两根互为相反数,
∴根据韦达定理得:m² - 1 = 0,
解得:m = 1 或 m = -1
当 m = 1 时,方程是 x² + 1 = 0 没有实数根
当 m = -1 时,方程是 x² - 1 = 0 有两个实数根
所以 m = -1
故答案为:-1
本题考查一元二次方程根与系数的关系,x1+x2=,x1x2=,熟练掌握韦达定理并进行检验是否有实数根是解题关键.
10、4.3× 10-5
【解析】
解:0.000043=.故答案为.
11、
【解析】
分析:应用完全平方公式,求出算式的值是多少即可.
详解:=8﹣4+1=9﹣4.
故答案为9﹣4.
点睛:本题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.
12、m≤1
【解析】
根据不等式组解集的求法解答.求不等式组的解集.
【详解】
不等式组的解集是x>1,得:m≤1.
故答案为m≤1.
本题考查了不等式组解集,求不等式组的解集,解题的关键是注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
13、或
【解析】
根据一元二次方程根的判别式与根的情况的关系,求解判别式中的未知数.
【详解】
一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即,当 时,方程有2个实数根,当时,方程有1个实数根(2个相等的实数根),当 时,方程没有实数根.
一元二次方程有实数根,则,可求得或.
本题考查根据一元二次方程根的判别式.
三、解答题(本大题共5个小题,共48分)
14、 (1)无数;(2)图形见解析;1.
【解析】
(1)内角不固定,有无数个以线段a,b为一组邻边作平行四边形;
(2)作∠MAN=a,以A为圆心,线段a和线段b为半径画弧分别交射线AN和AM于点D和B,以D为圆心,线段b为半径画弧,以B为圆心,线段a为半径画弧,交于点C;连接BC,DC.则平行四边形ABCD就是所求作的图形.
【详解】
解:(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作无数个,
故答案为:无数;
(2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作1个,如图所示:四边形ABCD即为所求.
故答案为:1.
此题主要考查平行四边形的作法,熟练掌握作图方法是解题的关键.
15、(1)详见解析;(2)详见解析;(3)图详见解析,(1)和(2)中的结论仍然成立.
【解析】
(1)由等腰三角形的性质可证∠CDE=∠DCE,进而得到,然后根据“SAS”可证;
(2)由全等三角形的性质可知AE=BE,从而,根据余角的性质可证∠EAF=∠AFE,可证是等腰三角形;
(3)分点E在CD的右侧和点E在AB的左侧两种情况说明即可.
【详解】
(1)证明:∵四边形是正方形,
∴AD=BC,.
,
,即;
;
(2)证明:,
,
,
;,
是等腰三角形.
(3)(1)和(2)中的结论仍然成立.
由可知点E只能在CD的右侧或AB的左侧.
如图,当点E在CD的右侧时,
∵四边形是正方形,
∴AD=BC,.
,
,即;
;
,
∵AD//BC,
∴∠AFE=∠CBE,
;
,
是等腰三角形.
如图,当点E在AB的左侧时,同理可证(1)和(2)中的结论仍然成立.
本题考查了正方形的性质,全等三角形的判定与性质,余角的性质,平行线的性质,以及等腰三角形的判定与性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
16、(1),;(2).
【解析】
(1)把点P的坐标分别代入l1与l2的函数关系式,解方程即可;
(2)利用函数图象,写出直线在直线的上方所对应的自变量的范围即可.
【详解】
解:(1)因为点P是两条直线的交点,所以把点分别代入与中,得,,解得,.
(2)当时,的图象在的上面,
所以,不等式的解集是.
本题考查了一次函数的交点问题和一次函数与一元一次不等式的关系,读懂图象,弄清一次函数图象的交点与解析式的关系和一次函数与一元一次不等式的关系是解题的关键.
17、(1)证明见解析;(2)证明见解析;(3)△CFH是等边三角形,理由见解析.
【解析】
(1)利用等边三角形的性质得出条件,可证明:△BCE≌△ACD;
(2)利用△BCE≌△ACD得出∠CBF=∠CAH,再运用平角定义得出∠BCF=∠ACH进而得出△BCF≌△ACH因此CF=CH.
(3)由CF=CH和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH是等边三角形.
【详解】
解:(1)∵∠BCA=∠DCE=60°,
∴∠BCE=∠ACD.
又BC=AC、CE=CD,
∴△BCE≌△ACD.
(2)∵△BCE≌△ACD,
∴∠CBF=∠CAH.
∵∠ACB=∠DCE=60°,
∴∠ACH=60°.
∴∠BCF=∠ACH.
又BC=AC,
∴△BCF≌△ACH.
∴CF=CH.
(3)∵CF=CH,∠ACH=60°,
∴△CFH是等边三角形.
本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.
18、(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.
【解析】
(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;
(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;
(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.
【详解】
解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,
总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)
=200x+8600(0≤x≤6).
(2)200x+8600≤9000
解得x≤2
共有3种调运方案
方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;
方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;
方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;
(3)w=200x+8600
k>0,
所以当x=0时,总运费最低.
也就是从B市调运到C市0台,D市6台;
从A市调运到C市10台,D市2台;最低运费是8600元.
本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4.1.
【解析】
直接利用勾股定理得出AB的值,再利用直角三角形面积求法得出答案.
【详解】
∵∠C=90°,AC=1,BC=6,∴AB2.
∵CD⊥AB,∴DC×AB=AC×BC,∴DC4.1.
故答案为:4.1.
本题考查了勾股定理,正确利用直角三角形面积求法是解题的关键.
20、3
【解析】
利用平方差公式得到(m+n)(m-n)=6,然后把m-n=2代入计算即可.
【详解】
∵,
∴m+n=3.
21、甲
【解析】
根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
【详解】
∵,,
∴s甲2<s乙2,
∴甲班成绩较为稳定,
故答案为:甲.
本题考查方差的定义与意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
22、
【解析】
根据题意和函数图象中的数据可以列出相应的方程组,从而可以求得甲、乙两车的速度和乙到达B地时的时间,再根据函数图象即可求得乙车从A地出发到返回A地需的时间.
【详解】
解:如图,
设甲车的速度为a千米/小时,乙的速度为b千米/小时,甲乙第一相遇之后在c小时,相距200千米,则
,
解得:,
∴乙车从A地出发到返回A地需要:(小时);
故答案为:
本题考查函数图象,解三元一次方程组,解答本题的明确题意,利用数形结合的思想解答.
23、AB=2BC.
【解析】
过A作AE⊥BC于E、作AF⊥CD于F,
∵甲纸条的宽度是乙纸条宽的2倍,
∴AE=2AF,
∵纸条的两边互相平行,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD=BC,
∵∠AEB=∠AFD=90°,
∴△ABE∽△ADF,
∴,即.
故答案为AB=2BC.
考点:相似三角形的判定与性质.
点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)120°;(3)
【解析】
(1)先判断出,即可得出结论;
(2)由已知条件可证得△ADC∽△ACB,得出D=∠4,再由已知条件和三角形内角和定理得出∠1+2∠1=180°,求出∠1=60°,即可得出∠DAB的度数;
(3)由已知得出AC2=AB•AD,∠DAC=∠CAB,证出△ADC∽△ACB,得出∠D=∠ACB=90°,由勾股定理求出AB,即可得出AD的长.
【详解】
(1)证明:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,
∴AC2=AB•AD,
∴,
∵∠DAB为“可分角”,
∴∠CAD=∠BAC,
∴△DAC∽△CAB;
(2)解:如图所示:
∵AC平分∠DAB,
∴∠1=∠2,
∵AC2=AB•AD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠4,
∵∠DCB=∠DAB,
∴∠DCB=∠3+∠4=2∠1,
∵∠1+∠D+∠3=∠1+∠4+∠3=180°,
∴∠1+2∠1=180°,
解得:∠1=60°,
∴∠DAB=120°;
故答案为:120;
(3)解:∵四边形ABCD为“可分四边形”,∠DAB为“可分角”,
∴AC2=AB•AD,∠DAC=∠CAB,
∴AD:AC=AC:AB,
∴△ADC∽△ACB,
∴∠D=∠ACB=90°,
∴AB=,
∴AD= .
故答案为.
此题考查相似形综合题目,相似三角形的判定与性质,三角形内角和定理,勾股定理,新定义四边形,熟练掌握新定义四边形,证明三角形相似是解决问题的关键.
25、(1)0;(2)见解析;(3)①3、3;②4;③0【解析】
(1)根据当x=2或x=-2时函数值相等即可得;
(2)将坐标系中y轴左侧的点按照从左到右的顺序用平滑的曲线依次连接可得;
(3)①根据函数图象与x轴的交点个数与对应方程的解的个数间的关系可得;
②由直线y=-与y=x-2|x|的图象有4个交点可得;
③关于x的方程x-2|x|=a有4个实数根时,0【详解】
(1)由函数解析式y=x−2|x|知,当x=2或x=−2时函数值相等,
∴当x=−2时,m=0,
故答案为:0;
(2)如图所示:
(3)①由图象可知,函数图象与x轴有3个交点,所以对应的方程x−2|x|=0有3个实数根;
②由函数图象知,直线y=−与y=x−2|x|的图象有4个交点,
所以方程x−2|x|=−有4个实数根;
③由函数图象知,关于x的方程x−2|x|=a有4个实数根时,0故答案为:0故答案为:①3、3;②4;③0此题考查二次函数的性质,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.
26、(1)客车总数为6;(1)租4辆甲种客车,1辆乙种客车费用少.
【解析】
分析:(1)由师生总数为140人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;
(1)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为140人以及租车总费用不超过1300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x的值即可解决最值问题.
详解:(1)∵(134+6)÷45=5(辆)…15(人),∴保证140名师生都有车坐,汽车总数不能小于6;
∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;
综上可知:共需租6辆汽车.
(1)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:
,
解得:≤x≤1.
∵x为整数,∴x=1,或x=1.
设租车的总费用为y元,则y=180x+400×(6﹣x)=﹣110x+1400.
∵﹣110<0,∴当x=1时,y取最小值,最小值为1160元.
故租甲种客车4辆、乙种客车1辆时,所需费用最低,最低费用为1160元.
点睛:本题考查了一次函数的应用、解一元一次不等式组以及一次函数的性质,解题的关键是:(1)根据数量关系确定租车数;(1)找出y关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数关系式(不等式或不等式组)是关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲种客车
乙种客车
载客量/(人/辆)
45
30
租金/(元/辆)
400
280
河南省洛阳市伊川县2024-2025学年数学九上开学综合测试模拟试题【含答案】: 这是一份河南省洛阳市伊川县2024-2025学年数学九上开学综合测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省封丘2025届数学九上开学综合测试试题【含答案】: 这是一份河南省封丘2025届数学九上开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河南省邓州市张村乡中学数学九上开学综合测试模拟试题【含答案】: 这是一份2025届河南省邓州市张村乡中学数学九上开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。