2024年河南省周口川汇区数学九上开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)方程x2 = 2x的解是( )
A.x=2B.x1=,x2= 0C.x1=2,x2=0D.x = 0
2、(4分)如图,AB=AC,则数轴上点C所表示的数为( )
A.﹣1B.C.﹣2D. +2
3、(4分)若分式在实数范围内有意义,则实数x的取值范围是( )
A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2
4、(4分)在平行四边形中,对角线、相交于点,若,则=( )
A.B.C.D.
5、(4分)八年级(1)班“环保小组的5位同学在一次活动中捡废弃塑料袋的个数分别为:16,16,4,6,1.这组数据的中位数、众数分别为( )
A.1,16B.4,16C.6,16D.10,16
6、(4分)下列图形既是轴对称图形,又是中心对称图形的是( )
A.三角形B.圆C.角D.平行四边形
7、(4分)若二次根式有意义,那么的取值范围是( )
A.B.C.D.
8、(4分)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是( )
A.a>bB.a=bC.a<bD.以上都不对
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.
10、(4分)平面直角坐标系xOy中,点A(x1,y1)与B(x2,y2),如果满足x1+x2=0,y1﹣y2=0,其中x1≠x2,则称点A与点B互为反等点.已知:点C(3,8)、G(﹣5,8),联结线段CG,如果在线段CG上存在两点P,Q互为反等点,那么点P的横坐标xP的取值范围是__.
11、(4分)已知,如图,正方形ABCD的面积为25,菱形PQCB的面积为20,则阴影部分的面积为________.
12、(4分)若正比例函数y=kx的图象经过点(2,4),则k=_____.
13、(4分)如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.
三、解答题(本大题共5个小题,共48分)
14、(12分)关于x的方程:-=1.
(1)当a=3时,求这个方程的解;
(2)若这个方程有增根,求a的值.
15、(8分)已知,如图,在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为BO、DO的中点,连接AF,CE.
(1)求证:四边形AECF是平行四边形;
(2)如果E,F点分别在DB和BD的延长线上时,且满足BE=DF,上述结论仍然成立吗?请说明理由.
16、(8分)如图,在直角坐标系中,每个小方格都是边长为的正方形,的顶点均在格点上,点的坐标是.
先将沿轴正方向向上平移个单位长度,再沿轴负方向向左平移个单位长度得到,画出,点坐标是________;
将绕点逆时针旋转,得到,画出,并求出点的坐标是________;
我们发现点、关于某点中心对称,对称中心的坐标是________.
17、(10分)解方程组:.
18、(10分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次又用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在直角梯形ABCD中,,,,联结BD,若△BDC是等边三角形,那么梯形ABCD的面积是_________;
20、(4分)在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。
21、(4分)已知关于x的方程x2+mx-2=0的两个根为x1、x2,若x1+x2-x1x2=6,则m=______.
22、(4分)要从甲、乙、丙三名学生中选出一名学生参加数学竟赛。对这三名学生进行了10次“数学测试”,经过数据分析,3人的平均成绩均为92分。甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是_____________.
23、(4分)已知是实数,且和都是整数,那么的值是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算: (1)(+)(﹣)﹣(+3)2; (2).
25、(10分)已知y-2和x成正比例,且当x=1时,当y=4。
(1)求y与x之间的函数关系式;
(2)若点P(3,m)在这个函数图象上,求m的值。
26、(12分)瑞安市文化创意实践学校是一所负责全市中小学生素质教育综合实践活动的公益类事业单位,学校目前可开出:创意手工创意表演、科技制作(创客)、文化传承、户外拓展等5个类别20多个项目课程.
(1)学校3月份接待学生1000人,5月份增长到2560人,求该学校接待学生人数的平均月增长率是多少?
(2)在参加“创意手工”体验课程后,小明发动本校同学将制作的作品义卖募捐.当作品卖出的单价是2元时,每天义卖的数量是150件;当作品的单价每涨高1元时,每天义卖的数量将减少10件.问:在作品单价尽可能便宜的前提下,当单价定为多少元时,义卖所得的金额为600元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先移项得到x1-1x=0,再把方程左边进行因式分解得到x(x-1)=0,方程转化为两个一元一次方程:x=0或x-1=0,即可得到原方程的解为x1=0,x1=1.
【详解】
解:∵x1-1x=0,
∴x(x-1)=0,
∴x=0或x-1=0,
∴x1=0,x1=1.
故答案为x1=0,x1=1.
2、B
【解析】
可利用勾股定理求出AB的值,即可得到答案.
【详解】
解:由勾股定理可知:
AB==,
即AC=AB=,
A为数轴上的原点,
数轴上点C表示的数为,
故选:B.
本题考查实数与数轴,利用勾股定理求出AB的值为解决本题的关键.
3、D
【解析】
直接利用分式有意义的条件分析得出答案.
【详解】
∵代数式在实数范围内有意义,
∴x+2≠0,
解得:x≠﹣2,
故选D.
本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键.
4、D
【解析】
根据平行四边形的性质即可得到结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴S△AOB=S四边形ABCD=×24=6,
故选:D.
本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.
5、A
【解析】
根据中位数和众数的定义求解
【详解】
解:这组数据的中位数为:1 ,
众数为:16 .
故选:A
此题考查中位数和众数的定义,解题关键在于掌握其定义
6、B
【解析】
根据轴对称图形与中心对称图形的概念逐项判断可得答案.
【详解】
解:A、三角形不一定是轴对称图形,不是中心对称图形,故本选项错误;
B、圆既是轴对称图形又是中心对称图形,故本选项正确;
C、角是轴对称图形,不一定是中心对称图形,故本选项错误;
D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
故选:B.
此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7、C
【解析】
二次根式内非负,二次根式才有意义.
【详解】
要使二次根式有意义
则2-x≥0
解得:x≤2
故选:C
本题考查二次根式有意义的条件,注意二次根式具有“双重非负性”的特点.
8、A
【解析】
∵k=﹣2<0,
∴y随x的增大而减小,
∵1<2,
∴a>b.
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3或1.
【解析】
当为直角三角形时,有两种情况:
①当点落在矩形内部时,如答图1所示.
连结,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点、、共线,即沿折叠,使点落在对角线上的点处,则,,可计算出,设,则,,然后在中运用勾股定理可计算出.
②当点落在边上时,如答图2所示.此时四边形为正方形.
【详解】
解:当为直角三角形时,有两种情况:
①当点落在矩形内部时,如答图1所示.
连结,
在中,,,
,
沿折叠,使点落在点处,
,
当为直角三角形时,只能得到,
点、、共线,即沿折叠,使点落在对角线上的点处,如图,
,,
,
设,则,,
在中,
,
,
解得,
;
②当点落在边上时,如答图2所示.
此时为正方形,
.
综上所述,的长为3或1.
故答案为:3或1.
本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
10、﹣3≤xP≤3,且xp≠1.
【解析】
因为点P、Q是线段CG上的互反等点,推出点P在线段CC′上,由此可确定点P的横坐标xP的取值范围;
【详解】
如图,设C关于y轴的对称点C′(﹣3,8).
由于点P与点Q互为反等点.又因为点P,Q是线段CG上的反等点,
所以点P只能在线段CC′上,
所点P的横坐标xP的取值范围为:﹣3≤xP≤3,且xp≠1.
故答案为:﹣3≤xP≤3,且xp≠1.
本题考查坐标与图形的性质、点A与点B互为反等点的定义等知识,解题的关键是灵活运用所学知识解决问题,所以中考常创新题目.
11、1
【解析】
由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.
【详解】
∵正方形ABCD的面积是25,
∴AB=BC=BP=PQ=QC=5,
又∵S菱形PQCB=PQ×EC=5×EC=20,
∴S菱形PQCB=BC•EC,
即20=5•EC,
∴EC=4,
在Rt△QEC中,EQ==3;
∴PE=PQ-EQ=2,
∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.
故答案为1.
此题主要考查了菱形的性质和面积计算以及正方形的性质,根据已知得出EC=8,进而求出EQ的长是解题关键.
12、2
【解析】
13、6
【解析】
如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;
【详解】
解:如图,连接.
∵四边形是平行四边形,
∴,,
∵,
∴,
∴,
∵,
∴,
故答案为6
本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
三、解答题(本大题共5个小题,共48分)
14、(1)x=-2;(2)a=-3.
【解析】
(1)将a=3代入,求解-=1的根,验根即可,
(2)先求出增根是x=1,将分式化简为ax+1+2=x-1,代入x=1即可求出a的值.
【详解】
解:(1)当a=3时,原方程为-=1,
方程两边同乘x-1,得3x+1+2=x-1,
解这个整式方程得x=-2,
检验:将x=-2代入x-1=-2-1=-3≠0,
∴x=-2是原分式方程的解.
(2)方程两边同乘x-1,得ax+1+2=x-1,
若原方程有增根,则x-1=0,解得x=1,
将x=1代入整式方程得a+1+2=0,解得a=-3.
本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.
15、见解析
【解析】(1)根据平行四边形的性质可得AO=CO,BO=DO,再由条件点E、F分别为BO、DO的中点,可得EO=OF,进而可判定四边形AECF是平行四边形;
(2)由等式的性质可得EO=FO,再加上条件AO=CO可判定四边形AECF是平行四边形.
(1)证明:∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,
∵点E、F分别为BO、DO的中点,
∴EO=OF,
∵AO=CO,
∴四边形AECF是平行四边形;
(2)解:结论仍然成立,
理由:∵BE=DF,BO=DO,
∴EO=FO,
∵AO=CO,
∴四边形AECF是平行四边形.
16、, , .
【解析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用旋转的性质得出对应点位置进而得出答案;
(3)直接利用关于点对称的性质得出对称中心即可.
【详解】
(1)如图所示:△A1B1C1,即为所求,点C1坐标是:(−2,1);
故答案为(−2,1);
(2)如图所示:△A2B1C2,即为所求,点C2坐标是:(−5,0);
故答案为(−5,0);
(3)点C. C2关于某点中心对称,对称中心的坐标是:(−3,−1).
故答案为(−3,−1).
本题考查了坐标系中作图,解题的关键是根据图形找出相对应的点即可.
17、,
【解析】
注意到可分解为,从而将原高次方程组转换为两个二元一次方程组求解.
【详解】
解:由得,即或,
∴原方程组可化为或.
解得;解得.
∴原方程组的解为,.
18、第一次买了11本资料.
【解析】
设第一次买了x本资料,根据“比上次多买了21本”表示出另外一个未知数,再根据等量关系“第一次用121元买了若干本资料,第二次又用241元在同一商家买同样的资料,这次商家每本优惠4元”列出方程,即可求解.
【详解】
设第一次买了x本资料,
根据题意,得:-=4
整理,得:x2+51x﹣611=1.
解得:x1=﹣61,x2=11,
经检验:它们都是方程的根,但x1=﹣61不符合题意,舍去,
答:第一次买了11本资料.
该题主要考查了列分式方程解应用题,解题的关键是正确分析已知设出未知数,找准等量关系列出方程,然后解方程即可求解.另外该题解完之后要尝试其他的解法,以求一题多解,举一反三.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
【分析】作DE⊥BC,先证四边形ABED是矩形,得AD=BE=3,AB=DE,再根据等边三角形性质得到BC=2BE=6,∠BDE=60°,再利用勾股定理可求得高,再运用梯形面积计算公式可求得结果.
【详解】作DE⊥BC,
因为四边形ABCD的直角梯形,,,
所以,四边形ABED是矩形,
所以,AD=BE=3,AB=DE,
又因为,三角形BCD是等边三角形,
所以,BC=2BE=6,∠BDE=60°,
所以,在直角三角形BED中,BD=BC=6,由勾股定理可得
DE=,
所以,AB=DE=
所以,梯形ABCD的面积是:
故答案为:
【点睛】本题考核知识点:直角梯形.解题关键点:作辅助线,把问题转化为直角三角形解决.
20、0.5
【解析】
首先根据三角形周长及斜边长度求得两直角边的和,再根据勾股定理得出两直角边各自平方数的和的值,再利用完全平方公式得出两直角边的乘积的2倍的值即可求出三角形面积.
【详解】
解:由题意可得AC+BC+AB=,
∵∠C=90°,则AB为斜边等于2,
∴AC+BC=,
再根据勾股定理得出,
根据完全平方公式,
将AC+BC=和代入公式得:,
即=1,
∴Rt△ABC面积=0.5=0.5.
本题考查了勾股定理,解题的关键是利用完全平方公式求得两直角边的乘积的2倍的值.
21、-2
【解析】
利用根与系数的关系求出两根之和与两根之积,代入所求式子中计算即可求出值.
【详解】
解:依题意得:x1+x1=-m,x1x1=-1.
所以x1+x1-x1x1=-m-(-1)=6
所以m=-2.
故答案是:-2.
此题考查了一元二次方程根与系数的关系,一元二次方程ax1+bx+c=0(a≠0)的根与系数的关系为:x1+x1=-,x1•x1=.
22、丙
【解析】
根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答即可.
【详解】
解:因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,
丙的方差最小,所以这10次测试成绩比较稳定的是丙,
故答案为:丙
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
23、
【解析】
根据题意可以设m+=a(a为整数),=b(b为整数),求出m,然后代人=b求解即可.
【详解】
由题意设m+=a(a为整数),=b(b为整数),
∴m=a-,
∴=b,
整理得:
,
∴b2-8=1,8a-ab2=-b,
解得:b=±3,a=±3,
∴m=±3-.
故答案为±3-.
本题主要考查的是实数的有关知识,根据题意可以设m+=a(a为整数),=b(b为整数),整理求出a,b的值是解答本题的关键..
二、解答题(本大题共3个小题,共30分)
24、(1)-19-6; (2)3-.
【解析】
分析:(1)用平方差公式和完全平方公式计算;(2)把式子中的二次根式都化为最简二次根式后,再加减.
详解:(1)()(﹣)﹣(+3)2
=7-5-(3+6+18)
=-19-6;
(2)
=
=3-.
点睛:本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号,能够使乘法公式的尽量使用乘法公式.
25、(1)y=2x+2;(2)m=8
【解析】
(1)设y-2=kx,把已知条件代入可求得k,则可求得其函数关系式,可知其函数类型;
(2)把点的坐标代入可得到关于m的方程,可求得m的值.
【详解】
(1)设y-2=kx,
把x=1,y=4代入求得k=2,
∴函数解析式是y=2x+2;
(2)∵点P(3,m)在这个函数图象上,
∴m=2×3+2=8.
本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键.
26、(1)该学校接待学生人数的增长率为60%;(2)单价定为5元.
【解析】
(1)设平均月增长率为,根据题意得到一元二次方程即可求解;
(2)设定价为元,求出可卖出的件数,根据义卖所得的金额为600元得到一元二次方程即可求解.
【详解】
解:(1)设平均月增长率为,则根据题意得,
解得,(舍),
∴该学校接待学生人数的增长率为60%.
(2)设定价为元,此时可卖出件,
∴可列方程,解得,.
∵作品单价要尽可能便宜,
∴单价定为5元.
答:当单价定为5元时,义卖所得的金额为600元.
本题考查了一元二次方程的应用,关键在于明确数量与每件利润的表示方法.
题号
一
二
三
四
五
总分
得分
2024年河南省新乡七中九上数学开学综合测试试题【含答案】: 这是一份2024年河南省新乡七中九上数学开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省周口市淮阳县九上数学开学检测试题【含答案】: 这是一份2024-2025学年河南省周口市淮阳县九上数学开学检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省叶县九上数学开学综合测试模拟试题【含答案】: 这是一份2024-2025学年河南省叶县九上数学开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。