河南省漯河市临颍县2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】
展开
这是一份河南省漯河市临颍县2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图中,点为边上一点,点在上,过点作交于点,过点作交于, 下列结论错误的是( )
A.B.C.D.
2、(4分)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前名,他还必须清楚这名同学成绩的( )
A.众数B.平均数C.方差D.中位数
3、(4分)若实数a满足,那么a的取值情况是( )
A.B.C.或D.
4、(4分)在四边形中,若,则等于( )
A.B.C.D.
5、(4分)要使二次根式有意义,x的取值范围是( )
A.x≠-3B.x≥3C.x≤-3D.x≥-3
6、(4分)将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是( )
A.向上平移3个单位 B.向下平移3个单位
C.向左平移7个单位 D.向右平移7个单位
7、(4分)下列函数的图象不经过第一象限,且y随x的增大而减小的是( )
A.B.C.D.
8、(4分)数据2,3,3,5,6,10,13的中位数为( )
A.5B.4C.3D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程=3的解是_____.
10、(4分)如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.
11、(4分)命题“全等三角形的面积相等”的逆命题是__________
12、(4分)在平面直角坐标系中,点在第________象限.
13、(4分)如下图,将边长为 9cm 的正方形纸片 ABCD 折叠,使得点 A 落在边 CD 上的 E 点,折痕为 MN.若 CE 的长为 6cm,则 MN 的长为_____cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.
15、(8分)△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为 1 个单位长度.
(1)画出△ABC 关于原点 O 的中心对称图形△A1B1C1,并写出点 A1 的坐标;
(2)将△ABC 绕点 C 顺时针旋转 90°得到△A2B2C,画出△A2B2C,求在旋转过程中,点 A 所经过的路径长
16、(8分)王老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的八年(1)班和八年(2)班进行了检测。如图所示表示从两班随机抽取的10名学生的得分情况:
(1)利用图中提供的信息,补全下表:
(2)你认为那个班的学生纠错的得分情况比较整齐一些,通过计算说明理由.
17、(10分)已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.
(1)如图1,点在上,点在的延长线上,
求证:=ME,⊥.ME
简析: 由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE是 三角形,进而得出结论.
(2)如图2, 在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.
(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM= ;若点E在直线BC上,则DM= .
18、(10分)如图,在矩形中,,分别在,上.
(1)若,.
①如图1,求证:;
②如图2,点为延长线上一点,的延长线交于,若,求证:;
(2)如图3,若为的中点,.则的值为 (结果用含的式子表示)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形中,连接,且,过点作于点,过点作于点,在的延长线上取一点,,若,则的度数为____________.
20、(4分)公路全长为skm,骑自行车t小时可到达,为了提前半小时到达,骑自行车每小时应多走_____________.
21、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交边BC于点E,AD=5,AB=3,则BE=________.
22、(4分)某地区为了增强市民的法治观念,随机抽取了一部分市民进行一次知识竞赛,将竞赛成绩(得分取整数)整理后分成五组并绘制成如图所示的频数直方图.请结合图中信息,解答下列问题:
抽取了多少人参加竞赛?
这一分数段的频数、频率分别是多少?
这次竞赛成绩的中位数落在哪个分数段内?
23、(4分)已知正比例函数图象经过点(4,﹣2),则该函数的解析式为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.
25、(10分)已知:直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P.
(1)求该定点P的坐标;
(2)已知点A、B坐标分别为(0,1)、(2,1),若直线l与线段AB相交,求k的取值范围;
(3)在0≤x≤2范围内,任取3个自变量x1,x2、x3,它们对应的函数值分别为y1、y2、y3,若以y1、y2、y3为长度的3条线段能围成三角形,求k的取值范围.
26、(12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:
(1)BC= cm;
(2)当t为多少时,四边形PQCD成为平行四边形?
(3)当t为多少时,四边形PQCD为等腰梯形?
(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据三角形的平行线定理:平行于三角形一边的直线截其他两边所在的 直线 ,截得的三角形的三边与原三角形的三边对应成比例,即可得解.
【详解】
根据三角形的平行线定理,可得
A选项,,错误;
B选项,,正确;
C选项,,正确;
D选项,,正确;
故答案为A.
此题主要考查三角形的平行线定理,熟练掌握,即可解题.
2、D
【解析】
9人成绩的中位数是第5名,参赛选手要想知道自己是否进入前五名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有9个人,且他们的成绩各不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.
故选D
本题考查了统计量的选择,属于基础题,难度较低,熟练掌握中位数的特性为解答本题的关键.
3、D
【解析】
根据二次根式的性质即可解答.
【详解】
由题意可知:=﹣a+2=﹣(a﹣2),
∴a﹣2≤0,
∴a≤2,
故选D.
本题考查了二次根式的性质,熟知是解决问题的关键.
4、B
【解析】
如图,连接BD.利用三角形法则解题即可.
【详解】
如图,连接BD.
∵,
∴.
又,
∴,即.
故选B.
考查了平面向量,属于基础题,熟记三角形法则即可解题,解题时,注意转化思想的应用.
5、D
【解析】
根据二次根式的意义,被开方数是非负数.
【详解】
解:根据题意,得
解得,x≥-3.
此题主要考查自变量的取值范围,二次根式有意义的条件.
6、C
【解析】
按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.
【详解】
依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.
故选C.
本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”.
7、A
【解析】
分别分析各个一次函数图象的位置.
【详解】
A. ,图象经过第二、四象限,且y随x的增大而减小;
B. , 图象经过第一、二、三象限;
C. ,图象经过第一、二、四象限;
D. ,图象经过第一、三、四象限;
所以,只有选项A符合要求.
故选A
本题考核知识点:一次函数的性质.解题关键点:熟记一次函数的性质.
8、A
【解析】
根据中位数的定义: 中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,即可得解.
【详解】
根据中位数的定义,得
5为其中位数,
故答案为A.
此题主要考查中位数的定义,熟练掌握,即可解题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据转化的思想,把二次根式方程化成整式方程,先把移项到右边,再两边同时平方把化成整式,进化简得到=1,再两边进行平方,得x=1,从而得解.
【详解】
移项得,=3﹣,
两边平方得,x+3=9+x﹣6,
移项合并得,6=6,
即:=1,
两边平方得,x=1,
经检验:x=1是原方程的解,
故答案为1.
本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.
10、
【解析】
如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.
【详解】
解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.
∵AB=AC=4,,
∴CH=1,AH=NB=
,BC=2,
∵AM∥BC,
∴∠M=∠DBC,
在△ADM和△CDB中,
,
∴△ADM≌△CDB(AAS),
∴AM=BC=2,DM=BD,
在RT△BMN中,∵BN=,MN=3,
∴,
∴BD=DM=,
∵BC=CD=BE=DE=2,
∴四边形EBCD是菱形,
∴EC⊥BD,BO=OD=,EO=OC,
∵AD=DC,
∴AE∥OD,AE=2OD=.
故答案为.
本题考查翻折变换、全等三角形的判定和性质、菱形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是添加辅助线构造全等三角形,学会转化的数学数学,利用三角形中位线发现AE=2OD,求出OD即可解决问题,属于中考常考题型.
11、如果两个三角形的面积相等,那么是全等三角形
【解析】
首先分清题设是:两个三角形全等,结论是:面积相等,把题设与结论互换即可得到逆命题.
【详解】
命题“全等三角形的面积相等”的逆命题是:如果两个三角形的面积相等,那么是全等三角形.
故答案为:如果两个三角形的面积相等,那么是全等三角形
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
12、二
【解析】
根据各象限内点的坐标特征解答.
【详解】
解:点位于第二象限.
故答案为:二.
本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
13、3
【解析】
根据图形折叠前后图形不发生大小变化得出∠MWE=∠AWM=90°,进而得出∠DAE=∠DAE,再证明△NFM≌△ADE,然后利用勾股定理的知识求出MN的长.
【详解】
解:作NF⊥AD,垂足为F,连接AE,NE,
∵将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,
∴∠D=∠AHM=90°,∠DAE=∠DAE,
∴△AHM∽△ADE,
∴∠AMN=∠AED,
在△NFM和△ADE中
∵,
∴△NFM≌△ADE(AAS),
∴FM=DE=CD-CE=3cm,
又∵在Rt△MNF中,FN=9cm,
∴根据勾股定理得:MN==3(cm).
故答案为3.
本题考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.
三、解答题(本大题共5个小题,共48分)
14、(1)A(,0),B(0,3);(2)或.
【解析】
分析:(1)由函数解析式,令y=0求得A点坐标,x=0求得B点坐标;
(2)有两种情况,若BP与x轴正方向相交于P点,则;若BP与x轴负方向相交于P点,则,由此求得的面积.
详解:(1)令y=0,得
∴A点坐标为
令x=0,得y=3,
∴B点坐标为(0,3);
∵
∴ 或
∴AP=或,
∴,或.
点睛:考查了一次函数的相关知识,是初中数学的常考题目,关键是求出一次函数与坐标轴的交点坐标.
15、 (1)图见解析;A1 (2,4);(2) 点 A 所经过的路径长为
【解析】
(1)根据网格结构找出点A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;
(2)根据网格结构找出点A、B绕点C顺时针旋转90°的对应点A2、B2的位置,然后顺次连接即可;利用勾股定理列式求出AC,再根据弧长公式列式计算即可得解.
【详解】
解:(1)△A1B1C1如图所示,A1(2,-4);
(2)△A2B2C如图所示,由勾股定理得,AC==,
点A所经过的路径长:l .
故答案为:(1)图见解析;A1 (2,4);(2) 点 A 所经过的路径长为.
本题考查利用旋转变换作图,勾股定理,弧长公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
16、(1)八年(1)班的平均数为24,八年(2)班的中位数为24,众数为21;(2)八年(1)成绩比较整齐.
【解析】
【分析】(1)分别根据平均数、中位数、众数的定义逐一进行求解即可得;
(2)根据方差的公式分别计算两个班的方差进行比较即可得.
【详解】(1)由图可知八年(1)班的成绩分别为24、21、27、24、21、27、21、24、27、24,
所以八年(1)班的平均数分为(24+21+27+24+21+27+21+24+27+24)÷10=24分,
八年(2)班的成绩从小到大排列为:15、21、21、21、24、24、27、27、30、30,
八年(2)班的中位数为24,众数为21;
(2),
,
∵
相关试卷
这是一份河南省济源市2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,四象限,则的值是,解答题等内容,欢迎下载使用。
这是一份2024-2025学年辽宁抚顺新抚区九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。