河南省宝丰市2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】
展开这是一份河南省宝丰市2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形,则∠AED=( )
A.60°B.65°C.70°D.75°
2、(4分)如图,点A是反比例函数图像上一点,AC⊥x轴于点C,与反比例函数图像交于点B,AB=2BC,连接OA、OB,若△OAB的面积为2,则m+n的值( )
A.-3B.-4C.-6D.-8
3、(4分)下列调查的样本所选取方式,最具有代表性的是( )
A.在青少年中调查年度最受欢迎的男歌手
B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间
C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查
D.对某市的出租车司机进行体检,以此反映该市市民的健康状况
4、(4分) “学习强国”的英语“Learningpwer”中,字母“n”出现的频率是( )
A.1B.C.D.2
5、(4分)函数y=中,自变量x的取值范围是( )
A.x>3B.x<3C.x=3D.x≠3
6、(4分)在平面直角坐标系中,点(1,-5)所在象限是 ( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
7、(4分)下列式子:,,,,其中分式的数量有( )
A.1个B.2个C.3个D.4个
8、(4分)某商品降价后欲恢复原价,则提价的百分数为( ).
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,ABCD的对角线相交于点O,且ADCD,过点O作OMAC,交AD于点M.如果CDM的周长为8,那么ABCD的周长是__.
10、(4分)若关于x的分式方程=+2有正整数解,则符合条件的非负整数a的值为_____.
11、(4分)方程的解是__________.
12、(4分)的倒数是_____.
13、(4分)一个n边形的内角和是720°,则n=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.
(1)当每吨售价是240元时,此时的月销售量是多少吨.
(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?
15、(8分)某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.
16、(8分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2 000 kg~5 000 kg(含2 000 kg和5 000 kg)的客户有两种销售方案(客户只能选择其中一种方案):
方案A:每千克5.8元,由基地免费送货;
方案B:每千克5元,客户需支付运费2 000元.
(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;
(2)求购买量x在什么范围时,选用方案A比方案B付款少;
(3)某水果批发商计划用20 000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.
17、(10分)如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线交AB于点D,交AC于点E.
求证:AE=2CE.
18、(10分)如图,正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,,H在BC延长线上,且CH=AF,连接DF,DE,DH。
(1)求证DF=DH;
(2)求的度数并写出计算过程.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线与轴的交点坐标是________________.
20、(4分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)
21、(4分)已知一元二次方程x2-6x+a =0有一个根为2,则另一根为_______.
22、(4分)如果的值为负数,则 x 的取值范围是_____________.
23、(4分)已知有两点、都在一次函数的图象上,则的大小关系是______(用“<”连接)
二、解答题(本大题共3个小题,共30分)
24、(8分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.
(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,
(1)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A1B1C1D1.
25、(10分)如图,在平行四边形ABCD中(AB>AD),AF平分∠DAB,交CD于点F,DE平分∠ADC,交AB于点E,AF与DE交于点O,连接EF
(1)求证:四边形AEFD为菱形;
(2)若AD=2,AB=3,∠DAB=60°,求平行四边形ABCD的面积.
26、(12分)如图,四边形和四边形都是平行四边形.
求证:四边形是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由题意可证△ABF≌△ADE,可得∠BAF=∠DAE=15°,可求∠AED=75°.
【详解】
∵四边形ABCD是正方形,
∴AB=AD,∠B=∠C=∠D=∠DAB=90°,
∵△AEF是等边三角形,
∴AE=AF,∠EAF=60°,
∵AD=AB,AF=AE,
∴△ABF≌△ADE(HL),
∴∠BAF=∠DAE==15°,
∴∠AED=75°,
故选D.
本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,熟练运用这些性质和判定解决问题是本题的关键.
2、D
【解析】
由AB=2BC可得 由于△OAB的面积为2可得,
由于点A是反比例函数可得由于m<0
可求m,n的值,即可求m+n的值。
【详解】
解:∵AB=2BC
∴
∵△OAB的面积为2
∴,
∵点A是反比例函数
∴
又∵m<0
∴m=-6
同理可得:n=-2
∴m+n=-8
故答案为:D
本题考查了反比例函数与几何图形,熟练掌握反比例函数与三角形面积的关系是解题的关键.
3、B
【解析】
试题解析:A. 只在青少年中调查不具有代表性,故本选项不符合题意;
B. 了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;
C. 只向八年级的同学进行调查不具有代表性,故本选项不符合题意;
D. 反映该市市民的健康状况只对出租车司机调查不具有代表性,故本选项不符合题意.
故选B.
4、C
【解析】
直接利用频率的定义分析得出答案.
【详解】
∵“学习强国”的英语“Learningpwer”中,一共有13个字母,n有2个,
∴字母“n”出现的频率是:
故选:C.
此题主要考查了频率的求法,正确把握定义是解题关键.
5、D
【解析】
由题意得,x﹣1≠0,
解得x≠1.
故选D.
6、A
【解析】分析:根据象限内点的坐标特征即可解答.
详解:点(1,-5)横坐标为正,纵坐标为负,故该点在第四象限.
点睛:本题主要考查了象限内点的坐标特征,牢记点的坐标特征是解题的关键.
7、B
【解析】
根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.
【详解】
解:,是分式,共2个,
故选:B.
此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母.
8、C
【解析】
解:设原价为元,提价百分数为,则,解得,故选.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、16
【解析】
由四边形ABCD是平行四边形,可得OA=OC,又由OM⊥AC,可得AM=CM,然后由△CDM的周长为8,求得平行四边形ABCD的周长.
【详解】
∵四边形ABCD是平行四边形,
∴OA=OC,
∵OM⊥AC,
∴AM=CM,
∵△CDM的周长为8,
∴CM+DM+CD=AM+DM+CD=AD+CD=8,
∴平行四边形ABCD的周长是:2×8=16.
故答案为:16.
本题考查了平行四边形的性质与线段垂直平分线的性质,解题的关键是熟练的掌握平行四边形与线段垂直平分线的性质.
10、1
【解析】
先解分式方程得x=,由分式方程有正整数解,得出a+1=4,或a+1=1,且a≠0,解出a的值,最后根据a为非负整数即可得出答案.
【详解】
解:方程两边同时乘以x﹣1,得:
3﹣ax=3+1(x﹣1),
解得x=,
∵是正整数,且≠1,
∴a+1=4,或a+1=1,且a≠0,
a=1或a=-1(不符合题意,舍去)
∴非负整数a的值为:1,
故答案为:1.
本题考查了解分式方程,注意不要漏掉分母不能为零的情况.
11、
【解析】
先移项,然后开平方,再开立方即可得出答案.
【详解】
,
,
故答案为:.
本题主要考查解方程,掌握开平方和开立方的法则是解题的关键.
12、
【解析】
分析:根据倒数的意义或二次根式的化简进行计算即可.
详解:因为×=1
所以的倒数为.
故答案为.
分析:此题主要考查了求一个数的倒数,关键是明确倒数的意义,乘积为1的两数互为倒数.
13、1
【解析】
多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.
【详解】
依题意有:
(n﹣2)•180°=720°,
解得n=1.
故答案为:1.
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
三、解答题(本大题共5个小题,共48分)
14、(1)60;(2)将售价定为200元时销量最大.
【解析】
(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.
(2)设当售价定为每吨x元时,根据当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元,当每吨售价每下降10元时,月销售量就会增加7.5吨,且该经销店计划月利润为9000元而且尽可能地扩大销售量,以9000元做为等量关系可列出方程求解.
【详解】
(1)45+×7.5=60;
(2)设售价每吨为x元,
根据题意列方程为:(x - 100)(45+×7.5)=9000,
化简得x2 - 420x + 44000=0,
解得x1=200,x2=220(舍去),
因此,将售价定为200元时销量最大.
本题考查理解题意能力,关键是找出降价10元,却多销售7.5吨的关系,从而列方程求解.
15、1元
【解析】
首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.
【详解】
解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:,解方程,得x=1.
经检验:x=1是原方程的根,且符合题意.
答:跳绳的单价是1元.
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
16、 (1)方案A:y=5.8x;方案B:y=5x+2 000(2)选用方案A比方案B付款少(3) B
【解析】
试题分析:(1)根据数量关系列出函数表达式即可;(2)先求出方案A应付款y与购买量x的函数关系为,方案B 应付款y与购买量x的函数关系为,然后分段求出哪种方案付款少即可;(3)令y=20000,分别代入A方案和B方案的函数关系式中,求出x,比大小.
试题解析:(1)方案A:函数表达式为.
方案B:函数表达式为
(2)由题意,得.
解不等式,得x<2500
∴当购买量x的取值范围为时,选用方案A比方案B付款少.
(3)他应选择方案B.
考点: 一次函数的应用
17、见解析
【解析】
由DE为垂直平分线可以知道,AE=BE,只要得到BE=2CE,即可,利用∠A=30°和∠C=90°,即可得到所求
【详解】
解:连接BE,
∵在△ABC中,∠C=90°,∠A=30°,
∴∠ABC=90°﹣∠A=60°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC﹣∠ABE=30°,
在Rt△BCE中,∵∠CBE=30°
∴BE=2CE,
∴AE=2CE.
本题主要考查垂直平分线的用法,掌握垂直平分线的性质是关键
18、(1)详见解析;(2),理由详见解析.
【解析】
(1)根据正方形的性质和全等三角形的判定和性质证明即可.
(2)利用勾股定理得出Rt△DFG和Rt△EFG中,有FG2=DF2-DG2=EF2-EG2,求得DG=DF,进而解答即可.
【详解】
(1)证明 ∵ 正方形ABCD的边长为6,
∴ AB=BC=CD=AD =6,.
∴ ,.
在△ADF和△CDH中,
∴ △ADF≌△CDH.(SAS)
∴ DF=DH ①
(2)连接EF
∵△ADF≌△CDH
∴.
∴ .
∵ 点E为BC的中点,
∴ BE=CE=1.
∵ 点F在AB边上,,
∴ CH= AF=2,BF=2.
∴ .
在Rt△BEF中,,
.
∴.②
又∵DE= DE,③
由①②③得△DEF≌△DEH.(SSS)
∴ .
此题考查全等三角形的判定与性质,正方形的性质,等腰直角三角形的性质,以及勾股定理,利用了转化的数学思想方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据一次函数的性质,与轴的交点即横坐标为0,代入即可得解.
【详解】
根据题意,得
当时,,
即与轴的交点坐标是
故答案为.
此题主要考查一次函数的性质,熟练掌握,即可解题.
20、①②③④
【解析】
分析:分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.
详解:∵BC=EC,
∴∠CEB=∠CBE,
∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠CEB=∠EBF,
∴∠CBE=∠EBF,
∴①BE平分∠CBF,正确;
∵BC=EC,CF⊥BE,
∴∠ECF=∠BCF,
∴②CF平分∠DCB,正确;
∵DC∥AB,
∴∠DCF=∠CFB,
∵∠ECF=∠BCF,
∴∠CFB=∠BCF,
∴BF=BC,
∴③正确;
∵FB=BC,CF⊥BE,
∴B点一定在FC的垂直平分线上,即PB垂直平分FC,
∴PF=PC,故④正确.
故答案为①②③④.
点睛:本题考查内容较多,由BC=EC,得∠CEB=∠CBE,再由平行四边形的性质得∠CEB=∠EBF,可得BE平分∠CBF;再由等腰三角形的判定与性质可得CF平分∠DCB,BC=FB;由线段垂直平分线的判定可得PF=PC.
21、1
【解析】
设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.
【详解】
设方程另一根为t,
根据题意得2+t=6,
解得t=1.
故答案为1.
此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.
22、.
【解析】
根据分式的值为负数,分子的最小值为1,得出分母小于0列出关于x的不等式,求出不等式的解集即可得到x的范围.
【详解】
∵,,
∴,
解得.
故答案为
本题考查分式的值.分式的值要为负,那么分母和分子必须异号,在本题中分子已经为正,那么分母只能为负.
23、
【解析】
利用一次函数的增减性可求得答案.
【详解】
∵y=−3x+n,
∴y随x的增大而减小,
∵点 、都在一次函数y=−3x+n的图象上,且1>−2,
∴,
故答案为:.
此题考查一次函数图象上点的坐标特征,解题关键在于掌握函数图象的走势.
二、解答题(本大题共3个小题,共30分)
24、(1)图略(1)向右平移10个单位,再向下平移一个单位.(答案不唯一)
【解析】
(1)D不变,以D为旋转中心,顺时针旋转90°得到关键点A,C,B的对应点即可;
(1)最简单的是以C′D′的为对称轴得到的图形,应看先向右平移几个单位,向下平移几
个单位.
25、(1)见解析;(2)3.
【解析】
(1)根据平行四边形的性质得到AB∥CD,得到∠EAF=∠DFA,根据角平分线的定义得到∠DAF=∠EAF,求得∠DAF=∠AFD,得到AD=DF,同理AD=AE,根据菱形的判定定理即可得到结论;
(2)过D作DH⊥AB于H,解直角三角形得到DE=,根据平行四边形的面积公式即可得到结论.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EAF=∠DFA,
∵AF平分∠DAB,
∴∠DAF=∥EAF,
∴∠DAF=∠AFD,
∴AD=DF,
同理AD=AE,
∴DF=AE,
∴四边形AEFD是平行四边形,
∵AD=DF,
∴四边形AEFD为菱形;
(2)过D作DH⊥AB于H,
∵∠DAB=60°,AD=2,
∴DH=,
∴平行四边形ABCD的面积=DH•AB=3.
本题考查了菱形的判定和性质,平行四边形的性质,解直角三角形,熟练掌握菱形的判定定理是解题的关键.
26、详见解析
【解析】
首先根据平行四边形的性质,得出,,,,进而得出,,即可判定.
【详解】
∵四边形是平行四边形,
∴,
∵四边形是平行四边形,
∴,
∴,
∴四边形是平行四边形
此题主要考查平行四边形的性质和判定,熟练掌握,即可解题.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份甘肃省泾川市2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河南省平顶山宝丰县联考九上数学开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河南省宝丰九年级数学第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。