河北省石家庄市裕华实验中学2025届数学九年级第一学期开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
A.1,2,3B.4,6,8C.6,8,10D.13,14,15
2、(4分)下列图形是轴对称的是( )
A.B.C.D.
3、(4分)如图,△ABC是面积为27cm2的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为( )
A.9cm2B.8cm2C.6cm2D.12 cm2
4、(4分)函数的自变量的取值范围是( )
A.B.C.D.
5、(4分)矩形一个角的平分线分矩形一边为2cm和3cm两部分,则这个矩形的面积为( )
A.10cm2B.15cm2C.12cm2D.10cm2或15cm2
6、(4分)若一次函数的图象如图所示,则不等式的解集为( )
A.B.C.D.
7、(4分)下列选项中,能使分式值为的的值是( )
A.B.C.或D.
8、(4分)若关于x,y的二元一次方程组的解为,一次函数y=kx+b与y=mx+n的图象的交点坐标为( )
A.(1,2)B.(2,1)C.(2,3)D.(1,3)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,已知,则_______.
10、(4分)一次函数y=-x-1的图象不经过第_____象限.
11、(4分)已知关于x的方程的解是负数,则n的取值范围为 .
12、(4分) 的计算结果是___________.
13、(4分)的非负整数解为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)图①中的值为 ;
(Ⅱ)求统计的这组数据的平均数、众数和中位数;
(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
15、(8分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
16、(8分)为迎接:“国家卫生城市”复检,某市环卫局准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.
(1)求每个A型垃圾箱和B型垃圾箱各多少元?
(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.
①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;
②当买A型垃圾箱多少个时总费用最少,最少费用是多少?
17、(10分)甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.
甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 87
89 79 54 88 92 90 87 68 76 94 84 76 69 83 92
乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 92
73 76 92 84 57 87 89 88 94 83 85 80 94 72 90
(1)请根据乙校的数据补全条形统计图;
(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;
(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,
请为他们各写出一条可以使用的理由;
甲校: .乙校: .
(4)综合来看,可以推断出 校学生的数学学业水平更好一些,理由为 .
18、(10分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V(m3)的反比例函数,且当V=0.8m3时,P=120kPa。
(1)求P与V之间的函数表达式;
(2)当气球内的气压大于100kPa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________
20、(4分)若等式成立,则的取值范围是__________.
21、(4分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是_____
22、(4分)计算:(﹣)2=_____.
23、(4分)在直角ΔABC中,∠BAC=90°,AC=3,∠B=30°,点D在BC上,若ΔABD为等腰三角形,则BD=___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(1)2﹣6+3;
(2)(﹣)(+)+(2﹣3)2;
用指定方法解下列一元二次方程:
(3)x2﹣36=0(直接开平方法);
(4)x2﹣4x=2(配方法);
(5)2x2﹣5x+1=0(公式法);
(6)(x+1)2+8(x+1)+16=0(因式分解法)
25、(10分)4月23日是世界读书日,总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人漱养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末学校为了调查这学期学生课外阅读情况,随机抽样调查了一部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.
(1)本次调查的学生人数为______人;
(2)求本次所调查学生读书本数的众数,中位数;
(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?
26、(12分)已知在中,是的中点,,垂足为,交于点,且.
(1)求的度数;
(2)若,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、12+22=5≠32,故不能组成直角三角形,错误;
B、42+62≠82,故不能组成直角三角形,错误;
C、62+82=102,故能组成直角三角形,正确;
D、132+142≠152,故不能组成直角三角形,错误.
故选:C.
考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
2、D
【解析】
根据图形的特点结合轴对称图形和中心对称图形的概念解答.
【详解】
解:A、既不是轴对称图形,也不是中心对称图形,故本项错误;
B、既不是轴对称图形,也不是中心对称图形,故本项错误;
C、是中心对称图形,不是轴对称图形,故本项错误;
D、是轴对称图形,故本项正确;
故选择:D.
此题考查了轴对称图形和中心对称图形的概念,熟记的定义是解题的关键.
3、A
【解析】
先证明△AEH∽△AFG∽△ABC,再根据相似三角形的面积比是相似比的平方,即可得出结果.
【详解】
解:∵是面积为的等边三角形
∴
∵矩形平行于
∴
∴
∵被截成三等分
∴,
∴
∴
∴图中阴影部分的面积
故选:A
本题考查了相似三角形的判定和性质,正确理解题意并能灵活运用相关判定方法和性质是解题的关键.
4、C
【解析】
根据分母不为零分式有意义,可得答案.
【详解】
解:由题意,得
2019-x≠0,
解得x≠2019,
故选:C.
本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.
5、D
【解析】
根据矩形性质得出AB=CD,AD=BC,AD∥BC,由平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=1cm,DE=3cm和AE=3cm,DE=1cm两种情况即可求得矩形的边长,从而求解.
【详解】
解:∵四边形ABCD是矩形,
∴AB=CD,AD=BC,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AB=AE,
当AE=1cm,DE=3cm时,AD=BC=5cm,AB=CD=AE=1cm.
∴矩形ABCD的面积是:1×5=10cm1;
当AE=3cm,DE=1cm时,AD=BC=5cm,AB=CD=AE=3cm,
∴矩形ABCD的面积是:5×3=15cm1.
故矩形的面积是:10cm1或15cm1.
故选:D.
本题考查矩形的性质以及等腰三角形的判定与性质.注意掌握数形结合思想与分类讨论思想的应用.
6、C
【解析】
直接根据图像在x轴上方时所对应的x的取值范围进行解答即可.
【详解】
由图像可知,不等式的解集为:
故答案选:C
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
7、D
【解析】
根据分子等于0,且分母不等于0列式求解即可.
【详解】
由题意得
,
解得
x=-1.
故选D.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
8、A
【解析】
函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.
【详解】
∵关于x,y的二元一次方程组的解为,
∴一次函数y=kx+b与y=mx+n的图象的交点坐标为(1,2).
故选A.
本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据题意,先求出AD的长度,然后相似三角形的性质,得到,即可求出DE.
【详解】
解:∵,
∴,
∵,
∴,
∴,
∴,
∴;
故答案为:.
本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的性质进行解题.
10、一.
【解析】
先根据一次函数y= -x-1中k= -,b=-1判断出函数图象经过的象限,进而可得出结论.
【详解】
解:∵一次函数y=-x-1中k=-<0,b=-1<0,
∴此函数的图象经过二、三、四象限,不经过第一象限.
故答案为:一.
本题考查一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限.
11、n<1且
【解析】
分析:解方程得:x=n﹣1,
∵关于x的方程的解是负数,∴n﹣1<0,解得:n<1.
又∵原方程有意义的条件为:,∴,即.
∴n的取值范围为n<1且.
12、3.5
【解析】
原式=4-=3=3.5,
故答案为3.5.
13、0,1,2
【解析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
【详解】
解:移项得:,
合并同类项,得,
不等式两边同时除以-7,得,
所以符合条件的非负整数解是0,1,2.
本题考查了不等式的解法和非负整数解的知识,准确求解不等式是解决这类问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.
【解析】
分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;
(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.
解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
(Ⅱ)观察条形统计图,
∵,
∴这组数据的平均数是1.52.
∵在这组数据中,1.8出现了16次,出现的次数最多,
∴这组数据的众数为1.8.
∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,
∴这组数据的中位数为1.5.
(Ⅲ)∵在所抽取的样本中,质量为的数量占.
∴由样本数据,估计这2500只鸡中,质量为的数量约占.
有.
∴这2500只鸡中,质量为的约有200只.
点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
15、(1)见解析(2)成立
【解析】
试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.
(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可
得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.
试题解析:(1)在正方形ABCD中,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE=CF
∵∠GCE=∠GCF, GC=GC
∴△ECG≌△FCG(SAS).
∴GE=GF.
∴GE=DF+GD=BE+GD.
考点:1.正方形的性质;2.全等三角形的判定与性质.
16、(1)每个A型垃圾箱100元,每个B型垃圾箱120元;(2)①w=﹣20x+3600(0≤x≤16且x为整数);②买16个A型垃圾箱总费用最少,最少费用是1元
【解析】
(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,根据“购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元”,即可得出关于m、n的二元一次方程组,解之即可得出结论;
(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,根据总价=单价×购进数量,即可得出w关于x的函数关系式;②利用一次函数的性质解决最值问题.
【详解】
解:(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,
根据题意得:
解得:.
答:每个A型垃圾箱100元,每个B型垃圾箱120元.
(2)①设购买x个A型垃圾箱,则购买(30﹣x)个B型垃圾箱,
根据题意得:w=100x+120(30﹣x)=-20x+3600(0≤x≤16且x为整数).
②∵w=-20x+3600中k=-20<0,
∴w随x值增大而减小,
∴当x=16时,w取最小值,最小值=-20×16+3600=1.
答:买16个A型垃圾箱总费用最少,最少费用是1元.
故答案为(1)每个A型垃圾箱100元,每个B型垃圾箱120元;(2)①w=-20x+3600(0≤x≤16且x为整数);②买16个A型垃圾箱总费用最少,最少费用是1元.
本题考查了二元一次方程组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量间的关系,找出w关于x的函数关系式;②利用一次函数的性质,解决最值问题.
17、(1)见解析;(2)见解析;(3)见解析;(4)见解析.
【解析】
【分析】(1)根据提供数据,整理出各组的频数,再画图;(2)由数据可知,乙校中位数是86,众数是1;(3)答案不唯一,理由需包含数据提供的信息;(4)答案不唯一,理由需支撑推断结论.
【详解】解:(1)补全条形统计图,如下图.
(2)86;1.
(3)答案不唯一,理由需包含数据提供的信息.如:甲校平均数最高;乙校众数最高;
(4)答案不唯一,理由需支撑推断结论.如:甲校成绩比较好,因为平均数最高,且有一半的人分数大于87.
【点睛】本题考核知识点:数据的代表.解题关键点:从统计图表获取信息.
18、(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
【解析】
(1)设气球内气体的气压P(kPa)和气体体积V(m3)的反比例函数为,将V=0.8时,P=120,代入求出F,再将F的值代入,可得P与V之间的函数表达式。
(2)为确保气球不爆炸,则 时,即,解出不等式解集即可。
【详解】
解:(1)设P与V之间的函数表达式为
当V=0.8时,P=120,
所以
∴F=96
∴P与V之间的函数表达式为
(2)当 时,
∴
∴为确保气球不爆炸,气球的体积应不小于0.96
答(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
解:∵四边形ABCD是菱形,AC=2,BD=,
∴∠ABO=∠CBO,AC⊥BD.
∵AO=1,BO=,
∴AB=2,
∴sin∠ABO==
∴∠ABO =30°,
∴∠ABC=∠BAC =60°.
由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;
∵∠ABO=∠CBO,
∴BE=BF,
∴△BEF是等边三角形,
∴∠BEF=60°,
∴∠OEF=60°,
∴∠AEO=60°,
∵∠BAC =60°.
∴△AEO是等边三角形,,
∴AE=OE,
∴BE=AE,同理BF=FC,
∴EF是△ABC的中位线,
∴EF=AC=1,AE=OE=1.
同理CF=OF=1,
∴五边形AEFCD的周长为=1+1+1+2+2=2.
故答案为2.
20、
【解析】
根据二次根式有意义的条件,列出不等式组,即可得解.
【详解】
根据题意,得
解得.
此题主要考查二次根式有意义的条件,熟练掌握,即可解题.
21、m>
【解析】
根据图象的增减性来确定(2m-1)的取值范围,从而求解.
【详解】
∵一次函数y=(2m-1)x+1,y随x的增大而增大,
∴2m-1>1,
解得,m>,
故答案是:m>.
本题考查了一次函数的图象与系数的关系.一次函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1.
22、.
【解析】
根据乘方的定义计算即可.
【详解】
(﹣)2=.
故答案为:.
本题考查了乘方的意义,一般地,n个相同的因数a相乘,即a·a·a·…·a计作an,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数.
23、3或
【解析】
分两种情况讨论即可:①BA=BD,②DA=DB.
【详解】
解:①如图:
当AD成为等腰△BAD的底时,BA=BD,∵∠BAC=90°,∠B=30°,AC=3,∴BC=2x3=6,AB=3,∴BD=BA=3;
②如图:
当AB成为等腰△DAB的底边时,DA=DB, 点D在AB的中垂线与斜边BC的交点处,
∴∠DAB=∠B=30°,∴∠ADC=∠B+∠DAB=60°, ∵∠C=90°-∠B=60°, ∴△ADC为等边三角形,∴BD=AD=3,
故答案为3或3.
本题考查了等腰三角形的性质及线段垂直平分线的性质,关键是灵活运用这些性质.
二、解答题(本大题共3个小题,共30分)
24、(1)14;(2)31﹣12;(3)x1=﹣6,x2=6;(4)x1=2﹣,x2=2+;(1)x1=,x2=;(6)x1=x2=﹣1.
【解析】
(1)先把各二次根式化为最简二次根式,然后合并同类二次根式即可;
(2)利用平方差公式和完全平方公式计算;
(3)直接开平方法求解;
(4)配方法求解可得;
(1)公式法求解即可;
(6)因式分解法解之可得.
【详解】
解:(1)2﹣6+3
=4﹣6×+3×4
=2+12
=14;
(2)(﹣)(+)+(2﹣3)2
=6﹣1+12+18﹣12
=31﹣12.
(3)x2=36,
∴x=±6,
即x1=﹣6,x2=6;
(4)x2﹣4x+4=2+4,
即(x﹣2)2=6,
∴x﹣2= ,
∴x1=2﹣ ,x2=2+ ;
(1)∵a=2,b=﹣1,c=1,
∴b2﹣4ac=21﹣8=17>0,
∴x= ,
即x1= ,x2= ;
(6)(x+1)2+8(x+1)+16=0
(x+1+4)2=0,
即(x+1)2=0,
∴x+1=0,
即x1=x2=﹣1.
故答案为:(1)14;(2)31﹣12;(3)x1=﹣6,x2=6;(4)x1=2﹣,x2=2+;(1)x1=,x2=;(6)x1=x2=﹣1.
本题考查二次根式的混合运算,解一元二次方程,根据不同的方程选择合适的方法是解题的关键.
25、(1)20;(2)4,4;(3)估计该校学生这学期读书总数约3600本
【解析】
将条形图中的数据相加即可;
根据众数和中位数的概念解答即可;
先求出平均数,再解答即可.
【详解】
,
故答案为20;
由条形统计图知,调查学生读书本数最多的是4本,
故众数是4本
在调查的20人读书本数中,从小到大排列中第9个和第10个学生读的本数都是4本,
故中位数是4本;
故答案为4;4;
每个人读书本数的平均数是:
(本),
总数是:(本)
答:估计该校学生这学期读书总数约3600本.
本题考查条形统计图、用样本估计总体、中位数、众数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.
26、(1)90°(1)1.4
【解析】
(1)连接CE,根据线段垂直平分线的性质转化线段BE到△AEC中,利用勾股定理的逆定理可求∠A度数;
(1)设AE=x,则AC可用x表示,在Rt△ABC中利用勾股定理得到关于x的方程求解AE值.
【详解】
(1)连接CE,∵D是BC的中点,DE⊥BC,
∴CE=BE.
∵BE1−AE1=AC1,
∴AE1+AC1=CE1.
∴△AEC是直角三角形,∠A=90°;
(1)在Rt△BDE中,BE==2.
所以CE=BE=2.
设AE=x,则在Rt△AEC中,AC1=CE1−AE1,
所以AC1=12−x1.
∵BD=4,
∴BC=1BD=3.
在Rt△ABC中,根据BC1=AB1+AC1,
即64=(2+x)1+12−x1,
解得x=1.4.
即AE=1.4.
本题主要考查了勾股定理及其逆定理,解题的关键是利用勾股定理求解线段长度,选择直角三角形借助勾股定理构造方程是解这类问题通用方法.
题号
一
二
三
四
五
总分
得分
平均数
中位数
众数
甲校
83.4
87
89
乙校
83.2
2025届河北省石家庄市裕华区实验中学九上数学开学达标测试试题【含答案】: 这是一份2025届河北省石家庄市裕华区实验中学九上数学开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】: 这是一份2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年河北省石家庄市裕华区实验中学数学九年级第一学期期末联考模拟试题含答案: 这是一份2023-2024学年河北省石家庄市裕华区实验中学数学九年级第一学期期末联考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列说法不正确的是,下列函数中,是二次函数的是等内容,欢迎下载使用。