河北省高碑店市2024-2025学年数学九上开学复习检测模拟试题【含答案】
展开
这是一份河北省高碑店市2024-2025学年数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知菱形ABCD的面积是120,对角线AC=24,则菱形ABCD的周长是( )
A.52B.40C.39D.26
2、(4分)不等式2x-1≤5的解集在数轴上表示为( )
A.B.C.D.
3、(4分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得( )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
4、(4分)直角三角形中,斜边,,则的长度为( )
A.B.C.D.
5、(4分)如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是( )
A.B.C.D.
6、(4分)已知点都在反比例函数的图象上,则与的大小关系为( )
A.B.C.D.无法确定
7、(4分)如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形。那么,这四个图形中,其面积满足的个数是( )
A.1B.2C.3D.4
8、(4分)解不等式,解题依据错误的是( )
解:①去分母,得5(x+2)<3(2x﹣1)
②去括号,得5x+10<6x﹣3
③移项,得5x﹣6x<﹣3﹣10
④合并同类项,得﹣x<﹣13
⑤系数化1,得x>13
A.②去括号法则B.③不等式的基本性质1
C.④合并同类项法则D.⑤不等式的基本性质2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系:______________.
10、(4分)计算:_________.
11、(4分)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为_______°.
12、(4分)已知关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,则m的取值范围是_____.
13、(4分)如果最简二次根式和是同类二次根式,那么a=_______
三、解答题(本大题共5个小题,共48分)
14、(12分)因式分解:
(1)a(x﹣y)﹣b(y﹣x)2
(2)2x3﹣8x2+8x.
15、(8分)计算:(1)2﹣6+3;
(2)(﹣)(+)+(2﹣3)2;
用指定方法解下列一元二次方程:
(3)x2﹣36=0(直接开平方法);
(4)x2﹣4x=2(配方法);
(5)2x2﹣5x+1=0(公式法);
(6)(x+1)2+8(x+1)+16=0(因式分解法)
16、(8分)如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1㎝/秒的速度移动,同时点Q从点B开始沿BC边向点C以2㎝/秒的速度移动.()
(1)如果ts秒时,PQ//AC,请计算t的值.
(2)如果ts秒时,△PBQ的面积等于S㎝2,用含t的代数式表示S.
(3)PQ能否平分△ABC的周长?如果能,请计算出t值,不能,说明理由.
17、(10分)如图,在四边形中,且,四边形的对角线,相交于,点,分别是,的中点,求证:.
18、(10分)在平面直角坐标系xOy中,边长为5的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C.D都在第一象限。
(1)当点A坐标为(4,0)时,求点D的坐标;
(2)求证:OP平分∠AOB;
(3)直接写出OP长的取值范围(不要证明).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知A(﹣2,2),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____
20、(4分)命题“如果a2=b2,那么a=b.”的否命题是__________.
21、(4分)一个三角形的底边长为5,高为h可以任意伸缩.写出面积S随h变化的函数解析式_____.
22、(4分)在▱ABCD中,若∠A+∠C=270˚,则∠B=_____.
23、(4分)如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚和交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使=3,=3),然后张开两脚,使、两个尖端分别在线段l的两端上,若=2,则的长是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.
25、(10分)数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?
26、(12分)王老师为了了解学生在数学学习中的纠错情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的八年级(5)班和八年级(6)班进行了检测.并从两班各随机抽取10名学生的得分绘制成下列两个统计图.根据以上信息,整理分析数据如下:
(1)求出表格中a,b,c的值;
(2)你认为哪个班的学生纠错得分情况比较整齐一些,通过计算说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先利用菱形的面积公式计算出BD=10,然后根据菱形的性质和勾股定理可计算出菱形的边长=13,从而得到菱形的周长.
【详解】
∵菱形ABCD的面积是120,
即×AC×BD=120,
∴BD==10,
∴菱形的边长==13,
∴菱形ABCD的周长=4×13=1.
故选A.
本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积计算可利用平行四边形的面积公式计算,也可利用菱形面积=ab(a、b是两条对角线的长度)进行计算.
2、A
【解析】
先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.
【详解】
2x-1≤5,
移项,得 2x≤5+1,
合并同类项,得 2x≤6,
系数化为1,得 x≤3,
在数轴上表示为:
故选A.
本题考查了在数轴上表示不等式的解集,熟练掌握表示方法是解题的关键.不等式的解集在数轴上表示的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.
3、A
【解析】
解:∵一次函数y=kx+b的图象经过一、三象限,
∴k>1,
又该直线与y轴交于正半轴,
∴b>1.
∴k>1,b>1.
故选A.
4、A
【解析】
根据题意,是直角三角形,利用勾股定理解答即可.
【详解】
解:根据勾股定理,在中,
故选A
本题考查勾股定理的运用,属于基础题型,熟练掌握勾股定理是解答本题的关键.
5、B
【解析】
取DC的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
【详解】
取中点,连接、、,
,
.
在中,利用勾股定理可得.
在中,根据三角形三边关系可知,
当、、三点共线时,最大为.
故选:.
本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.
6、B
【解析】
分析:根据反比例函数的系数k的取值范围,判断出函数的图像,由图像的性质可得解.
详解:∵反比例函数
∴函数的图像在一三象限,在每一个象限,y随x增大而减小
∵-3<-1
∴y1<y2.
故选B.
点睛:此题主要考查了反比例函数的图像与性质,关键是利用反比例函数的系数k确定函数的图像与性质.
7、D
【解析】
分析:利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理;利用圆的面积公式表示出S1、S2、S3,然后根据勾股定理即可解答;在勾股定理的基础上结合等腰直角三角形的面积公式,运用等式的性质即可得出结论;分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.
详解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2.
第一幅图:∵S3=c2,S1=a2,S2=b2
∴S1+S2= (a2+b2)=c2=S3;
第二幅图:由圆的面积计算公式知:S3=,S2=,S1=,
则S1+S2=+== S3;
第三幅图:由等腰直角三角形的性质可得:S3=c2,S2=b2,S1=a2,
则S3+S2=(a2+b2)=c2=S1.
第四幅图:因为三个四边形都是正方形则:
∴S3=BC2=c2,S2= AC2=b2,,S1=AB2=a2,
∴S3+S2=a2+b2=c2=S1.
故选:D.
点睛:此题主要考查了三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式.
8、D
【解析】
根据题目中的解答步骤可以写出各步的依据,从而可以解答本题.
【详解】
解:由题目中的解答步骤可知,
②去括号法则,故选项A正确,
③不等式的基本性质1,故选项B正确,
④合并同类项法则,故选项C正确,
⑤不等式的基本性质3,故选项D错误,
故选D.
本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题分析:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.
解:根据题意得:
y=,
整理得:;
则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;
故答案为y=.
考点:分段函数.
10、
【解析】
先计算二次根式的乘法,然后进行化简,最后合并即可.
【详解】
原式.
故答案为:.
本题考查了二次根式的混合运算,掌握各种知识点的运算法则是解答本题的关键.
11、
【解析】
∵□ABCD与□DCFE的周长相等,且有公共边CD,
∴AD=DE,∠ADE=∠BCF=60°+70°=130°.
∴.
12、m<2且m≠1.
【解析】
根据一元二次根的判别式及一元二次方程的定义求解.
【详解】
解:∵关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,
∴m-1≠0,且△>0,即4-4(m-1)>0,解得m<2,
∴m的取值范围是:m<2且m≠1.
故答案为:m<2且m≠1.
本题考查根的判别式及一元二次方程的定义,掌握公式正确计算是解题关键.
13、3
【解析】
分析:根据同类二次根式的被开方式相同列方程求解即可.
详解:由题意得,
3a+4=25-4a,
解之得,
a=3.
故答案为:3.
点睛:本题考查了同类二次根式的应用,根据同类二次根式的定义列出关于a的方程是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)(x﹣y)[a﹣b(x﹣y)];(1)1x(x﹣1)1.
【解析】
(1)提取公因式x-y,在医院公因式法进行计算即可
(1)先提取公因式1x,再对余下的多项式利用完全平方公式继续分解
【详解】
(1)原式=a(x-y)-b(y-x) =(x﹣y)[a﹣b(x﹣y)];
(1)原式=1x(x -4x+4)=1x(x﹣1)1.
此题考查提取公因式法与公式法的综合运用,解题关键在于提取公因式
15、(1)14;(2)31﹣12;(3)x1=﹣6,x2=6;(4)x1=2﹣,x2=2+;(1)x1=,x2=;(6)x1=x2=﹣1.
【解析】
(1)先把各二次根式化为最简二次根式,然后合并同类二次根式即可;
(2)利用平方差公式和完全平方公式计算;
(3)直接开平方法求解;
(4)配方法求解可得;
(1)公式法求解即可;
(6)因式分解法解之可得.
【详解】
解:(1)2﹣6+3
=4﹣6×+3×4
=2+12
=14;
(2)(﹣)(+)+(2﹣3)2
=6﹣1+12+18﹣12
=31﹣12.
(3)x2=36,
∴x=±6,
即x1=﹣6,x2=6;
(4)x2﹣4x+4=2+4,
即(x﹣2)2=6,
∴x﹣2= ,
∴x1=2﹣ ,x2=2+ ;
(1)∵a=2,b=﹣1,c=1,
∴b2﹣4ac=21﹣8=17>0,
∴x= ,
即x1= ,x2= ;
(6)(x+1)2+8(x+1)+16=0
(x+1+4)2=0,
即(x+1)2=0,
∴x+1=0,
即x1=x2=﹣1.
故答案为:(1)14;(2)31﹣12;(3)x1=﹣6,x2=6;(4)x1=2﹣,x2=2+;(1)x1=,x2=;(6)x1=x2=﹣1.
本题考查二次根式的混合运算,解一元二次方程,根据不同的方程选择合适的方法是解题的关键.
16、(1);(2)S=();(3)PQ不能平分△ABC的周长,理由见解析.
【解析】
(1)由题意得, PB=6-t,BQ=2t,根据PQ∥AC,得到,代入相应的代数式计算求出t的值;
(2)由题意得, PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=BP×BQ,列出表达式即可;
(3)由题意根据勾股定理求得AC=10cm,利用PB+BQ是△ABC周长的一半建立方程解答即可.
【详解】
解:(1)由题意得,BP=6-t,BQ=2t,
∵PQ∥AC,
∴,即,
解得t=,
∴当t=时,PQ∥AC;
(2)由题意得, PB=6-t,BQ=2t,
∵∠B=90°,
∴ BP×BQ=×2t×(6-t)= ,
即ts秒时,S=();
(3)PQ不能平分△ABC的周长.
理由:∵在△ABC中,∠B=90°,AB=6cm,BC=8cm,
∴AC==10cm,
设ts后直线PQ将△ABC周长分成相等的两部分,则AP=tcm,BQ=2tcm,BP=(6-t)cm,由题意得
2t+6-t=×(6+8+10)
解得:t=6>4,
所以不存在直线PQ将△ABC周长分成相等的两部分,
即PQ不能平分△ABC的周长.
本题考查勾股定理的应用、相似三角形的性质和三角形的面积,灵活运用相似三角形的性质,结合图形求解是解题的关键.
17、见解析
【解析】
据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF.
【详解】
解:证明:连接BF、DE,如图所示:
∵,,
∴四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵E、F分别是OA、OC的中点,
∴OE=OA,OF=OC,
∴OE=OF,
∴四边形BFDE是平行四边形,
∴BE=DF.
本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
18、(1)D(7,4);(2)见解析;(3)
相关试卷
这是一份河北省滦南县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北省沧州市2024-2025学年九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河北省保定市竞秀区乐凯中学2024-2025学年九上数学开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。