河北保定满城区龙门中学2024-2025学年九年级数学第一学期开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,是反比例函数 图象上一点,是轴正半轴上一点,以,为邻边作,若点及中点都在反比例函数图象上,则的值为( )
A.B.C.D.
2、(4分)如图是小军设计的一面彩旗,其中,,点在上,,则的长为( )
A.B.C.D.
3、(4分)函数y=x-1的图象是( )
A.B.
C.D.
4、(4分)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中不能说明△ABC是直角三角形的是( )
A.a=32,b=42,c=52B.a=9,b=12,c=15
C.∠A:∠B:∠C=5:2:3D.∠C﹣∠B=∠A
5、(4分)如图,△ABC中,D、E分别是AB、AC边的中点,延长DE至F,使EF=DF,若BC=8,则DF的长为( )
A.6B.8C.4D.
6、(4分)下列计算正确的是( )
A.B.
C.=1D.
7、(4分)货车行驶 25 千米与小车行驶 35 千米所用时间相同,已知小车每小时比货车多行驶 20千米,求两车的速度各为多少?设货车的速度为 x 千米/小时,依题意列方程正确的是( )
A.B.C.D.
8、(4分)下列各组数据中,能做为直角三角形三边长的是( )。
A.1、2、3B.3、5、7C.32,42,52D.5、12、13
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形的对角线与相交于点,正方形绕点旋转,直线与直线相交于点,若,则的值是____.
10、(4分)如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4,则DC的长为________.
11、(4分)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M的直线将平行四边形OABC的面积分成相等的两部分,请写出该直线的函数表达式_____.
12、(4分)有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为 .
13、(4分)如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,,AE、BF分别交BD、AC于M、N两点,连OE、下列结论:;;;,其中正确的序数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.
(1)若将这种水果每千克的售价降低元,则每天销售量是多少千克?(结果用含的代数式表示)
(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?
15、(8分)我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.
特例感知:
(1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;
①当△ABC是一个等边三角形时,AF与BC的数量关系是: ;
②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是 ;
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.
拓展应用:
(3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.
16、(8分)如图,在平面直角坐标系中,已知点,点,点在第一象限内,轴,且.
(1)求直线的表达式;
(2)如果四边形是等腰梯形,求点的坐标.
17、(10分)如图,一次函数y=kx+b(k≠0)经过点B(0,1),且与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).
(1)求一次函数与反比例函数的解析式;
(2)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?
18、(10分)佳佳商场卖某种衣服每件的成本为元,据销售人员调查发现,每月该衣服的销售量(单位:件)与销售单价(单位:元/件)之间存在如图中线段所示的规律:
(1)求与之间的函数关系式,并写出的取值范围;
(2)若某月该商场销售这种衣服获得利润为元,求该月这种衣服的销售单价为每件多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,AB=5,AC=7,BC=10,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,则PQ的长______.
20、(4分)如图所示,在菱形纸片ABCD中,AB=4,∠BAD=60°,按如下步骤折叠该菱形纸片:
第一步:如图①,将菱形纸片ABCD折叠,使点A的对应点A′恰好落在边CD上,折痕EF分别与边AD、AB交于点E、F,折痕EF与对应点A、A′的连线交于点G.
第二步:如图②,再将四边形纸片BCA′F折叠使点C的对应点C′恰好落在A′F上,折痕MN分别交边CD、BC于点M、N.
第三步:展开菱形纸片ABCD,连接GC′,则GC′最小值是_____.
21、(4分)已知函数y=2x2-3x+l,当y=1时,x=_____.
22、(4分)准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.
23、(4分)根式+1的相反数是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在梯形中,,,是上一点,且,,求证:是等边三角形.
25、(10分)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.
(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;
(2)直线经过A(2,3),且与y=x+3垂直,求解析式.
26、(12分)某中学八年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在八(1)、八(5)两班中产生.下表是这两个班的5名学生的比赛数据(单位:次)
根据以上信息,解答下列问题:
(1)求两班的优秀率及两班数据的中位数;
(2)请你从优秀率、中位数和方差三方面进行简要分析,确定获冠军奖的班级.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
设A(a,),B(0,m),再根据题意列出反比例函数计算解答即可.
【详解】
设A(a,),B(0,m)
OB的中点坐标为(0,),
以OA,AB为邻边作四边形ABCD,
则AC的中点坐标为(0,),
点C的坐标为(-a,m-)
点C及BC中点D都在反比例函数图像上
点D的坐标为(-a,m-)
k=-a(m-)=
解得am=18,k=-6
故选D
本题考查反比例函数,熟练掌握计算法则是解题关键.
2、B
【解析】
先求出∠ABD=∠D,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAC=30°,然后根据30°所对的直角边等于斜边的一半求出BC的长度是2cm,再利用勾股定理解答.
【详解】
解:如图,∵AD=AB=4cm,∠D=15°,
∴∠ABD=∠D=15°,
∴∠BAC=∠ABD+∠D=30°,
∵∠ACB=90°,AB=4cm,
,
在Rt△ABC中,,
故选:B.
本题主要考查了含30度角的直角三角形的边的关系,等腰三角形的等边对等角的性质,三角形的外角性质,熟练掌握性质定理是解题的关键.
3、D
【解析】
∵一次函数解析式为y=x-1,
∴令x=0,y=-1.
令y=0,x=1,
即该直线经过点(0,-1)和(1,0).
故选D.
考点:一次函数的图象.
4、A
【解析】
由三角形内角和定理及勾股定理的逆定理进行判断即可.
【详解】
A .a+b=32+42=25=52=c,构不成三角形,也就不可能是直角三角形了,故符合题意;
B.a2+b2=92+122=225=152=c2,根据勾股定理逆定理可以判断,△ABC是直角三角形,故不符合题意;
C.设∠A、∠B、∠C分别是5x、2x、3x,5x+2x+3x=180,x=18,∠A=90°,所以△ABC是直角三角形,故不符合题意;
D.∠C﹣∠B=∠A,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形,故不符合题意,
故选A.
本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
5、A
【解析】
根据三角形中位线的性质得出DE的长度,然后根据EF=DF,DE+EF=DF求出DF的长度.
【详解】
解:∵D、E分别为AB和AC的中点,
∴DE=BC=4,
∵EF=DF,DE+EF=DF,
∴DF=6,
∴选A.
本题主要考查的是三角形中位线的性质,属于基础题型.理解中位线的性质是解决这个问题的关键.
6、D
【解析】
根据二次根式的加减,二次根式的性质,二次根式的除法逐项计算即可.
【详解】
:A、与不是同类项,不能合并,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确.
故选D.
本题考查了二次根式的运算与性质,熟练掌握二次根式的性质与运算法则是解答本题的关键.
7、C
【解析】
题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.
解:根据题意,得
.
故选C.
8、D
【解析】
先求出两小边的平方和,再求出大边的平方,看看是否相等即可.
【详解】
解:A、12+22≠32,所以以1、2、3为边不能组成直角三角形,故本选项不符合题意;
B、32+52≠72,所以以3、5、7为边不能组成直角三角形,故本选项不符合题意;
C、(32)2+(42)2≠(52)2,所以以32、42、52为边不能组成直角三角形,故本选项不符合题意;
D、52+122=132,所以以5、12、13为边能组成直角三角形,故本选项符合题意;
故选:D.
本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.首先证明∠CPB=90°,求出DT,PT即可解决问题.
【详解】
解:如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.
∵四边形ABCD是正方形,
∴AC⊥BD,AE=EB,∠EAM=∠EBN=45°,
∵四边形EFGH是正方形,
∴∠MEN=∠AEB=90°,
∴∠AEM=∠BEN,
∴△AEM≌△BEN(ASA),
∴AM=BN,EM=EN,∠AME=∠BNE,
∵AB=BC,EF=EH,
∴FM=NH,BM=CN,
∵∠FMB=∠AME,∠CNH=∠BNE,
∴∠FMB=∠CNH,
∴△FMB≌△HNC(SAS),
∴∠MFB=∠NHC,
∵∠EFO+∠EOF=90°,∠EOF=∠POH,
∴∠POH+∠PHO=90°,
∴∠OPH=∠BPC=90°,
∵∠DBP=75°,∠DBC=45°,
∴∠CBP=30°,
∵BC=AB=2,
∴PB=BC•cs30°=,PR=PB=,RC=PR•tan30°=,
∵∠RTD=∠TDC=∠DCR=90°,
∴四边形TDCR是矩形,
∴TD=CR=,TR=CD=AB=2,
在Rt△PDT中,PD2=DT2+PT2=,
故答案为.
本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
10、
【解析】
过A点作A⊥BD于F,根据平行线的判定可得AF∥BC,根据含30度直角三角形的性质可得BC=AB,根据三角形内角和可得∠ADB=∠BAD,根据等腰三角形的性质可得BD=AB,从而得到BC=BD,在Rt△CBE中,根据含30度直角三角形的性质可得BC,在Rt△CBD中,根据等腰直角三角形的性质可得CD.
【详解】
过A点作A⊥BD于F,
∵∠DBC=90°,
∴AF∥BC,
∵CE=2AE,
∴AF=BC,
∵∠ABD=30°,
∴AF=AB,
∴BC=AB,
∵∠ABD=30°,∠ADB=75°,
∴∠BAD=75°,∠ACB=30°,
∴∠ADB=∠BAD,
∴BD=AB,
∴BC=BD,
∵CE=4,
在Rt△CBE中,BC=CE=6,
在Rt△CBD中,CD=BC=6.
故答案为:6.
此题考查了含30度直角三角形的性质,以及等腰三角形的判定和性质,得到Rt△CBE是含30度直角三角形,以及Rt△CBD是等腰直角三角形是解本题的关键.
11、
【解析】
如图所示:连接OB、AC相交于点E(3,1),过点E、M作直线EM,则直线EM即为所求的直线
设直线EM的解析式为y=kx+b,把E、M两点坐标代入y=kx+b中,得
解得
所以直线的函数表达式:y=2x-5.
故答案是:y=2x-5.
【点睛】此题考查了平行四边形的性质、坐标与图形性质以及利用待定系数法求一次函数的解析式,解题的关键是求出其中心对称点的坐标,过点E和点M作直线EM,再用待定系数法求直线的解析式即可.
12、AB=2BC.
【解析】
过A作AE⊥BC于E、作AF⊥CD于F,
∵甲纸条的宽度是乙纸条宽的2倍,
∴AE=2AF,
∵纸条的两边互相平行,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD=BC,
∵∠AEB=∠AFD=90°,
∴△ABE∽△ADF,
∴,即.
故答案为AB=2BC.
考点:相似三角形的判定与性质.
点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
13、
【解析】
易证得≌,则可证得结论正确;
由≌,可得,证得,选项正确;
证明是等腰直角三角形,求得选项正确;
证明≌,根据正方形被对角线将面积四等分,即可得出选项正确.
【详解】
解:四边形ABCD是正方形,
,,
在和中,
,
≌,
,
故正确;
由知:≌,
,
,
,
故正确;
四边形ABCD是正方形,
,,
是等腰直角三角形,
,
,
故正确;
四边形ABCD是正方形,
,,
在和中,
,
≌,
,
,
故正确;
故答案为:.
此题属于四边形的综合题考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质注意掌握全等三角形的判定与性质是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)每天销售量是千克;(2)水果店需将每千克的售价降低1元.
【解析】
(1)销售量原来销售量下降销售量,据此列式即可;
(2)根据销售量每千克利润总利润列出方程求解即可.
【详解】
解:(1)每天的销售量是(千克).
故每天销售量是千克;
(2)设这种水果每斤售价降低元,根据题意得:,
解得:,,
当时,销售量是;
当时,销售量是(斤.
每天至少售出260斤,
.
答:水果店需将每千克的售价降低1元.
考查了一元二次方程的应用,本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量.第二问,根据售价和销售量的关系,以利润作为等量关系列方程求解.
15、(1)AF=BC;a;(2)猜想:AF=BC,(3)
【解析】
(1)①先判断出AD=AE=AB=AC,∠DAE=120°,进而判断出∠ADE=30°,再利用含30度角的直角三角形的性质即可得出结论;
②先判断出△ABC≌△ADE,利用直角三角形的性质即可得出结论;
(2)先判断出△AEG≌△ACB,得出EG=BC,再判断出DF=EF,即可得出结论;
(3)先判断出四边形PHCD是矩形,进而判断出∠DPC=30°,再判断出PB=PC,进而求出∠APB=150°,即可利用“夹补三角形”即可得出结论.
【详解】
解:(1)
∵△ABC与△ADE是一对“夹补三角形”,
∴AB=AD,AC=AE,∠BAC+∠DAE=180°,
①∵△ABC是等边三角形,
∴AB=AC=BC,∠BAC=60°
∴AD=AE=AB=AC,∠DAE=120°,
∴∠ADE=30°,
∵AF是“夹补中线”,
∴DF=EF,
∴AF⊥DE,
在Rt△ADF中,AF=AD=AB=BC,
故答案为:AF=BC;
②当△ABC是直角三角形时,∠BAC=90°,
∵∠DAE=90°=∠BAC,
易证,△ABC≌△ADE,
∴DE=BC,
∵AF是“夹补中线”,
∴DF=EF,
∴AF=DE=BC=a,
故答案为a;
(2)解:猜想:AF=BC,
理由:如图1,延长DA到G,使AG=AD,连EG
∵△ABC与△ADE是一对“夹补三角形”,
∴AB=AD,AC=AE,∠BAC+∠DAE=180°,
∴AG=AB,∠EAG=∠BAC,AE=AC,
∴△AEG≌△ACB,
∴EG=BC,
∵AF是“夹补中线”,
∴DF=EF,
∴AF=EG,
∴AF=BC;
(3)证明:如图4,
∵△PAD是等边三角形,
∴DP=AD=3,∠ADP=∠APD=60°,
∵∠ADC=150°,
∴∠PDC=90°,
作PH⊥BC于H,
∵∠BCD=90°
∴四边形PHCD是矩形,
∴CH=PD=3,
∴BH=6﹣3=3=CH,
∴PC=PB,
在Rt△PCD中,tan∠DPC=,
∴∠DPC=30°
∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,
∴∠APB+∠CPD=180°,
∵DP=AP,PC=PB,
∴△PCD是△PBA的“夹补三角形”,
由(2)知,CD=,
∴△PAB的“夹补中线”=.
此题是四边形综合题,主要考查了全等三角形的判定和性质,含30度角的直角三角形的性质,锐角三角函数,新定义的理解和掌握,理解新定义是解本题的关键.
16、(1);(2)或
【解析】
(1)由得出BA=6,即可得B的坐标,再设直线BC的表达式,即可解得.
(2) 分两种情况,情况一:当时, 点在轴上;情况二:当时.分别求出两种情况D的坐标即可.
【详解】
(1)
轴
设直线的表达式为, 由题意可得
解得直线的表达式为
(2)1)当时, 点在轴上,设,
方法一:过点作轴, 垂足为
四边形是等腰梯形,
方法二:,解得
经检验是原方程的根,
但当时,四边形是平行四边形,不合题意,舍去
2)当时,则直线的函数解析式为
设
解得,经检验是原方程的根
时,四边形是平行四边形,不合题意,舍去
综上所述,点的坐标为或
此题考查一次函数、一元二次方程,平面坐标,解题关键在于结合题意分两种情况讨论D的坐标.
17、(1)y=x+1;y=;(2)当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.
【解析】
(1)把点A、B坐标代入y=kx+b,把点A的坐标代入y=,根据待定系数法即可求得一次函数与反比例函数的解析式;
(2)联立方程,求得得一次函数与反比例函数的图象交点坐标,然后利用函数图象的位置关系求解.
【详解】
(1)∵一次函数y=kx+b(k≠0)经过点A(1,2),点B(0,1),
∴,解得k=1,b=1
∴一次函数解析式为y=x+1;
∵点A(1,2)在反比例函数y=的图象上,
∴m=1×2=2,
∴反比例函数解析式为y=;
(2)∵方程组的解为或,
∴一次函数与反比例函数的图象交点坐标为(1,2)、(﹣2,﹣1),
∴当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.
18、(1);(2)该月这种衣服的销售单价为每件元
【解析】
(1)根据点的坐标,利用待定系数法可求出每月销售量y与销售单价x之间的函数关系式;
(2)根据总利润=每千克的利润×月销售数量,即可得出关于x的一元二次方程,解之即可得出结论.
【详解】
解:(1)依题意可设,
由图像得:点都在的图像上,
,
与之间的函数关系式:,
由图象得,的取值范围:;
(2)依题意得:,
,
解得: (舍去);
∴该月这种衣服的销售单价为每件元.
本题考查了一次函数的应用以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,根据三角形中位线定理计算即可.
【详解】
解:在△ABQ和△EBQ中,
,
∴△ABQ≌△EBQ(ASA),
∴BE=AB=5,AQ=QE,
同理CD=AC=7,AP=PD,
∴DE=CD-CE=CD-(BC-BE)=2,
∵AP=PD,AQ=QE,
∴PQ=DE=1,
故答案为:1.
本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
20、
【解析】
注意到G为AA'的中点,于是可知G点的高度终为菱形高度的一半,同时注意到G在∠AFA'的角平分线上,因此作GH⊥AB于H,GP⊥A'F于P,则GP=GH,根据垂线段最短原理可知GH就是所求最小值.
【详解】
解:如图,作GH⊥AB于H,DR⊥AB于R,GP⊥A'F于P,A'Q⊥AB于Q.
∵四边形ABCD是菱形,
∴DA=AB=BC=CD=4,AB∥CD,
∴A'Q=DR,
∵∠BAD=60°,
∴A'Q=DR=AD=2,
∵A'与A关于EF对称,
∴EF垂直平分AA',
∴AG=A'G,∠AFE=∠A'FE,
∴GP=PH,
又∵GH⊥AB,A'Q⊥AB
∴GH∥A'B,
∴GH=A'Q=DR=,
所以GC'≥GP=,当且仅当C'与P重合时,GC'取得最小值.
故答案为:.
熟练掌握菱形的性质,折叠的性质,及最短路径确定的方法,是解题的关键.
21、0或
【解析】
把y=1时代入解析式,即可求解.
【详解】
解:当y=1时,则1=2x2-3x+1,
解得:x=0或x=,
故答案为0或.
本题考查的是二次函数图象上的点坐标特征,只要把y值代入函数表达式求解即可.
22、1.25
【解析】
设小路的宽度为,根据图形所示,用表示出小路的面积,由小路面积为80平方米,求出未知数.
【详解】
设小路的宽度为,由题意和图示可知,小路的面积为
,解一元二次方程,由,可得.
本题综合考查一元二次方程的列法和求解,这类实际应用的题目,关键是要结合题意和图示,列对方程.
23、
【解析】
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
【详解】
解: +1的相反数是﹣﹣1,
故答案为:﹣﹣1.
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
由已知条件证得四边形AECD是平行四边形,则CE=AD,从而得出CE=CB,然后根据有一个角是60°的等腰三角形是等边三角形即可证得结论.
【详解】
证明:,,
四边形是平行四边形,
,
,
,
是等边三角形.
本题考查了等腰梯形的性质,等边三角形的判定,平行四边形的判定和性质,熟练掌握各定理是解题的关键.
25、(1)k=;(2)解析式为y=2x﹣2.
【解析】
试题分析: (1)根据L1⊥L2,则k1·k2=﹣1,可得出k的值即可;
(2)根据直线互相垂直,则k1·k2=﹣1,可得出过点A直线的k等于2,得出所求的解析式即可.
试题解析:
解:(1)∵L1⊥L2,则k1•k2=﹣1,
∴2k=﹣1,
∴k=﹣;
(2)∵过点A直线与y=x+2垂直,
∴设过点A直线的直线解析式为y=2x+b,
把A(2,2)代入得,b=﹣2,
∴解析式为y=2x﹣2.
26、 (1) 八(1)班的优秀率为,八(2)班的优秀率为 八(1)、八(2)班的中位数分别为150,147;(2)八(1)班获冠军奖
【解析】
(1)根据表中信息可得出优秀人数和总数,即可得出优秀率;首先将成绩由低到高排列,即可得出中位数;
(2)直接根据表中信息,分析即可.
【详解】
(1)八(1)班的优秀率为,八(2)班的优秀率为
∵八(1)班的成绩由低到高排列为139,148,150,153,160
八(2)班的成绩由低到高排列为139,145,147,150,169
∴八(1),八(2)班的中位数分别为150,147
(2)八(1)班获冠军奖.
理由:从优秀率看,八(1)班的优秀人数多;
从中位数来看,八(1)班较大,一般水平较高;
从方差来看,八(1)班的成绩也比八(2)班的稳定
∴八(1)班获冠军奖.
此题主要考查数据的处理,熟练掌握,即可解题.
题号
一
二
三
四
五
总分
得分
批阅人
1号
2号
3号
4号
5号
平均数
方差
八(1)班
139
148
150
160
153
150
46.8
八(5)班
150
139
145
147
169
150
103.2
广西柳州市五城区2024-2025学年九年级数学第一学期开学综合测试模拟试题【含答案】: 这是一份广西柳州市五城区2024-2025学年九年级数学第一学期开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河北省保定市满城区实验中学数学九上开学调研模拟试题【含答案】: 这是一份2025届河北省保定市满城区实验中学数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北省沧州青县联考九年级数学第一学期开学综合测试模拟试题【含答案】: 这是一份2024-2025学年河北省沧州青县联考九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。