2025届海南省儋州市洋浦中学九上数学开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知2x=3y(y≠0),则下面结论成立的是( )
A.B.
C.D.
2、(4分)如图,AC=AD,BC=BD,则有( )
A.AB垂直平分CDB.CD垂直平分AB
C.AB与CD互相垂直平分D.CD平分∠ACB
3、(4分)已知,则的关系是( )
A.B.C.D.
4、(4分)一个多边形的内角和比其外角和的2倍多180°,那么这个多边形是( )
A.五边形B.六边形C.七边形D.八边形
5、(4分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO.则BE的长度为( )
A.B.C.D.
6、(4分)如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则( )
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.∠1与∠2大小关系不能确定
7、(4分)如图,四边形的对角线与相交于点,下列条件不能判断四边形是平行四边形的是( )
A.,B.,
C.,D.,
8、(4分)如图图中,不能用来证明勾股定理的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组数据:2,3,4,5,6的方差是 ____
10、(4分)古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).
11、(4分)如图,已知直线y=x与反比例函数y=的图象交于A,B两点,且点A的横坐标为.在坐标轴上找一点C,直线AB上找一点D,在双曲线y=找一点E,若以O,C,D,E为顶点的四边形是有一组对角为60∘的菱形,那么符合条件点D的坐标为___.
12、(4分)一元二次方程x2﹣4=0的解是._________
13、(4分)如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:,求得值.
15、(8分)如图,中,的平分线交于点,的垂直平分线分别交、、于点、、,连接、.
(1)求证:四边形是菱形;
(2)若,,,试求的长.
16、(8分)如图,一次函数的图像与反比例函数的图像交于点,,
(1)求反比例函数与一次函数的函数表达式
(2)请结合图像直接写出不等式的解集;
(3)若点P为x轴上一点,△ABP的面积为10,求点P的坐标,
17、(10分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多20元,而用800元购买A种零件的数量和用600元购买B种零件的数量相等
(1)求A、B两种零件的单价;
(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?
18、(10分)如图所示,,分别表示使用一种白炽灯和一种节能灯的费用(元,分别用y1与y2表示)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.
(1)根据图象分别求出,对应的函数(分别用y1与y2表示)关系式;
(2)对于白炽灯与节能灯,请问该选择哪一种灯,使用费用会更省?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某种细菌的直径约为0.00 000 002米,用科学记数法表示该细菌的直径约为____米.
20、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE//BD,DE//AC,若AD=5,则四边形CODE的周长______.
21、(4分)正方形的边长为2,点是对角线上一点,和是直角三角形.则______.
22、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E为AD的中点,则OE的长为___.
23、(4分)如图,两张等宽的纸条交叉叠放在一起,若重叠都分构成的四边形ABCD中,AB=3,BD=1.则AC的长为_________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
(1)求每部型手机和型手机的销售利润;
(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
①求关于的函数关系式;
②该手机店购进型、型手机各多少部,才能使销售总利润最大?
(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
25、(10分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.
(1)当时,= ,= ;
(2)求当为何值时,是直角三角形,说明理由;
(3)求当为何值时,,并说明理由.
26、(12分)在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:
根据表中提供的信息回答下列问题:
(1)x的值为________ ,捐款金额的众数为________元,中位数为________元.
(2)已知全班平均每人捐款57元,求a的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题解析:A、两边都除以2y,得,故A符合题意;
B、两边除以不同的整式,故B不符合题意;
C、两边都除以2y,得,故C不符合题意;
D、两边除以不同的整式,故D不符合题意;
故选A.
2、A
【解析】
由AC=AD,BC=BD,可得点A在CD的垂直平分线上,点B在CD的垂直平分线上,又由两点确定一条直线,可得AB是CD的垂直平分线.
【详解】
解:∵AC=AD,BC=BD,
∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,
∴AB是CD的垂直平分线.
即AB垂直平分CD.
故选:A.
此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.
3、D
【解析】
根据a和b的值去计算各式是否正确即可.
【详解】
A. ,错误;
B. ,错误;
C. ,错误;
D. ,正确;
故答案为:D.
本题考查了实数的运算问题,掌握实数运算法则是解题的关键.
4、C
【解析】
设这个多边形的边数为n,根据多边形内角和公式和外角和定理建立方程求解.
【详解】
设这个多边形的边数为n,
由题意得
解得:
故选C.
本题考查多边形的内角和与外角和,熟记多边形内角和公式,以及外角和360°,是解题的关键.
5、C
【解析】
利用正方形的性质得到OB=OC=BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE的长.
【详解】
∵正方形ABCD的边长为,
∴OB=OC=BC=×=1,OB⊥OC,
∵CE=OC,
∴OE=2,
在Rt△OBE中,BE=.
故选C.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.
6、B
【解析】
试题分析:根据直角三角形斜边上的中线等于斜边的一半,可以证明DE=BE,再根据等腰三角形的性质即可解答.
解:∵∠ABC=∠ADC=90°,E是AC的中点,
∴DE=AC,BE=AC,
∴DE=BE,
∴∠1=∠1.
故选B.
考点:直角三角形斜边上的中线;等腰三角形的判定与性质.
7、C
【解析】
利用平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形进行分析即可.
【详解】
:A、AB∥DC,AD∥BC可利用两组对边分别平行的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;
B、AB∥DC,AB=DC可利用一组对边平行且相等的四边形是平行四边形判定这个四边形是平行四边形,故此选项不符合题意;
C. ,不能判断四边形是平行四边形,故此选项符合题意;
D. ,可利用对角线互相平分的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意.
故选C.
此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.
8、D
【解析】
根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.
【详解】
A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;
D、不能利用图形面积证明勾股定理,故此选项正确.
故选D.
此题主要考查了勾股定理的证明方法,根据图形面积得出是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
=4,∴S2= [(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2.
10、25%.
【解析】
设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,则当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,甲、乙蜂蜜售出瓶数分别为ax、3bx;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,甲、乙蜂蜜售出瓶数分别为3ax、2bx;列出方程,解方程求出,即可得出结果.
【详解】
解:设甲、乙、丙三种麦片的进价分别为a、b、c,丙麦片售出袋数为cx,
由题意得:,
解得:,
∴,
故答案为:25%.
本题考查了方程思想解决实际问题,解题的关键是通过题意列出方程,得出a、b、c的关系,进而求出利润率.
11、 (3,3)或(−3,−3).
【解析】
把A的横坐标代入直线解析式求出y的值,确定出A坐标,把A坐标代入反比例解析式求出k的值,确定出反比例解析式,设D(a,a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60°,以O、C、D、E为顶点的四边形是有一组对角为60°的菱形,D在直线y=x上,得到点C只能在y轴上,得出E横坐标为a,把x=a代入反比例函数解析式求出y的值,确定出E坐标,由菱形的边长相等得到OD=ED,进而求出a的值,确定出满足题意D的坐标即可.
【详解】
把x=代入y=x,得:y=3,即A(,3),
把点A(,3)代入y=kx,解得:k=3,
∴反比例函数解析式为y=,
设D点坐标(a,a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60∘,
∵以O、C. D. E为顶点的四边形是有一组对角为60∘的菱形,D在直线y=x上,
∴点C只能在y轴上,
∴E点的横坐标为a,
把x=a代入y=,得:y=,即E(a, ,
根据OE=ED,即:,
解得:a=±3,
则满足题意D为(3,3)或(−3,−3).
故答案为:(3,3)或(−3,−3).
考核知识点:反比例函数与几何结合.数形结合分析问题是关键.
12、x=±1
【解析】
移项得x1=4,
∴x=±1.
故答案是:x=±1.
13、③
【解析】
分析: 根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.
详解:∵BD=CD,DE=DF,
∴四边形BECF是平行四边形,
①BE⊥EC时,四边形BECF是矩形,不一定是菱形;
②AB=AC时,∵D是BC的中点,
∴AF是BC的中垂线,
∴BE=CE,
∴平行四边形BECF是菱形.
③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;
故答案是:②.
点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:
①定义;②四边相等;③对角线互相垂直平分.
三、解答题(本大题共5个小题,共48分)
14、2015
【解析】
先根据完全平方公式将多项式变形,再将a的值代入计算即可.
【详解】
原式=,
∵,
∴原式.
此题考查多项式的化简求值,二次根式的乘方计算,将多项式正确变形使计算更加简便.
15、(1)证明见解析;(2).
【解析】
(1)先根据垂直平分线的性质得:,,证明得,再由四边都相等的四边形是菱形可得结论;
(2)作辅助线,构建直角三角形,根据直角三角形的性质可得,由勾股定理得:,由,可得是等腰直角三角形,从而可得,由此即可解题.
【详解】
(1)证明:是的垂直平分线,即,,
,,
平分,
,
在和中,
,
,
,
∴
四边形是菱形;
(2)解:过作于,则,
,
,
,
在中,,
四边形是菱形,
,
,
是等腰直角三角形,
,
.
本题考查了菱形的判定和性质、三角形全等的性质和判定、等腰直角三角形的判定和性质以及直角三角形角的性质,熟练掌握菱形的判定是解(1)题的关键,构造直角三角形求线段长是解(2)题的关键.
16、(1);;(2)或;(3)点P的坐标为(3,0)或(-5,0).
【解析】
(1)根据反比例函数的图象经过,利用待定系数法即可求出反比例函数的解析式;进而求得的坐标,根据、点坐标,进而利用待定系数法求出一次函数解析式;
(2)根据、的坐标,结合图象即可求得;
(3)根据三角形面积求出的长,根据的坐标即可得出的坐标.
【详解】
解:(1)反比例函数的图象经过,
.
反比例函数的解析式为.
在上,所以.
的坐标是.
把、代入.得:,
解得,
一次函数的解析式为.
(2)由图象可知:不等式的解集是或;
(3)设直线与轴的交点为,
把代入得:,
,
的坐标是,
为轴上一点,且的面积为10,,,
,
,
当在负半轴上时,的坐标是;
当在正半轴上时,的坐标是,
即的坐标是或.
本题考查了用待定系数法求一次函数的解析式,一次和图象上点的坐标特征,三角形的面积的应用,主要考查学生的计算能力.
17、(1)A种零件的单价为1元,B种零件的单价为60元;(2)最多购进A种零件2件.
【解析】
(1)设A种零件的单价是x元,则B种零件的单价是(x-20)元,根据“用10元购买A种零件的数量和用600元购买B种零件的数量相等”列出方程并解答;
(2)设购买A种零件a件,则购买B种零件(200-a)件,根据“购买两种零件的总费用不超过14700元”列出不等式并解答.
【详解】
解:(1)设B种零件的单价为x元,则A零件的单价为(x+20)元,
则
解得:x=60
经检验:x=60 是原分式方程的解, x+20=1.
答:A种零件的单价为1元,B种零件的单价为60元.
(2)设购进A种零件m件,则购进B种零件(200﹣m)件,则有
1m+60(200﹣m)≤14700,
解得:m≤2,
m在取值范围内,取最大正整数, m=2.
答:最多购进A种零件2件.
考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.
18、(1)y1=x+2,y2=x+20(2)见解析
【解析】
(1)由图像可知,l1的函数为一次函数,则设y1=k1x+b1.由图象知,l1过点(0,2)、(500,17),能够得出l 1的函数解析式.同理可以得出l2的函数解析式.
(2)由图像可知l1、 l2的图像交于一点,那么交点处白炽灯和节能灯的费用相同,即x+2=x+20,由此得出x=1000时费用相同;x<1000时,使用白炽灯省钱;x>1000时,使用节能灯省钱.
【详解】
(1)设l1的函数解析式为y1=k1x+b1,
由图象知,l1过点(0,2)、(500,17),
可得方程组,解得,
故,l1的函数关系式为y1=x+2;
设l2的函数解析式为y2=k2x+b2,
由图象知,l2过点(0,20)、(500,26),
可得方程组,解得,
y2=x+20;
(2)由题意得,x+2=x+20,解得x=1000,
故,①当照明时间为1000小时时,两种灯的费用相同;
②当照明时间超过1000小时,使用节能灯省钱.
③当照明时间在1000小时以内,使用白炽灯省钱.
本题主要考查求一次函数的解析式、一次函数在实际生活中的应用.一次函数为中考重点考查内容,熟练掌握求一次函数解析式的方法是解决本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题解析:0.00 000 002=2×10-8.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
20、1
【解析】
通过矩形的性质可得,再根据∠AOB=11°,可证△AOD是等边三角形,即可求出OD的长度,再通过证明四边形CODE是菱形,即可求解四边形CODE的周长.
【详解】
∵四边形ABCD是矩形
∴
∵∠AOB=11°
∴
∴△AOD是等边三角形
∵
∴
∴
∵CE//BD,DE//AC
∴四边形CODE是平行四边形
∵
∴四边形CODE是菱形
∴
∴四边形CODE的周长
故答案为:1.
本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.
21、或.
【解析】
根据勾股定理得到BD=AC=,根据已知条件得到当点E是对角线的交点时,△EAD、△ECD是等腰直角三角形,求得DE=BD=,当点E与点B重合时,△EAD、△ECD是等腰直角三角形,得到DE=BD=.
【详解】
解:∵正方形ABCD的边长为2,
∴BD=AC=,
∵点E是对角线BD上一点,△EAD、△ECD是直角三角形,
∴当点E是对角线的交点时,△EAD、△ECD是等腰直角三角形,
∴DE=BD=,
当点E与点B重合时,△EAD、△ECD是等腰直角三角形,
∴DE=BD=,
故答案为:或.
本题考查了正方形的性质,等腰直角三角形的判定和性质,分类讨论是解题的关键.
22、
【解析】
由菱形的对角线互相平分且垂直可知菱形的面积等于小三角形面积的四倍可求出DO,根据勾股定理可求出AD,然后再根据直角三角形中斜边的中线等于斜边的一半,求解即可.
【详解】
解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=4,菱形ABCD的面积为4 ,
∴AO=2,DO=,∠AOD=90°,
∴AD=3,
∵E为AD的中点,
∴OE的长为:AD=.
故答案为: .
菱形的对角线的性质、勾股定理、直角三角形的性质都是本题的考点,根据题意求出DO和AD的长是解题的关键.
23、2
【解析】
过点D作DE⊥AB于点E,DF⊥BC于点F,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得OB的长,从而可得到BD的长.
【详解】
如图,过点D作DE⊥AB于点E,DF⊥BC于点F,连接AC,DB交于点O,
则DE=DF,
由题意得:AB∥CD,BC∥AD,
∴四边形ABCD是平行四边形
∵S▱ABCD=BC•DF=AB•DE.
又∵DE=DF.
∴BC=AB,
∴四边形ABCD是菱形;
∴OB=OD=2,OA=OC,AC⊥BD.
∴
∴AC=2AO=2
故答案为:2
本题考查了菱形的判定、解直角三角形以及四边形的面积,证得四边形为菱形是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
【解析】
(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;
(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;
②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;
(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.
【详解】
解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.
根据题意,得,
解得
答:每部型手机的销售利润为元,每部型手机的销售利润为元.
(2)①根据题意,得,即.
②根据题意,得,解得.
,,
随的增大而减小.
为正整数,
当时,取最大值,.
即手机店购进部型手机和部型手机的销售利润最大.
(3)根据题意,得.
即,.
①当时,随的增大而减小,
当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;
②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;
③当时,,随的增大而增大,
当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.
本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.
25、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析
【解析】
(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;
(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;
(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.
【详解】
解:(1)t=2时,CD=2×2=4,
∵∠ABC=90°,AB=16,BC=12,
∴AD=AC-CD=20-4=16;
(2)①∠CDB=90°时,
∴解得BD=9.6,
∴
t=7.2÷2=3.6秒;
②∠CBD=90°时,点D和点A重合,
t=20÷2=10秒,
综上所述,当t=3.6或10秒时,是直角三角形;
(3)如图,过点B作BF⊥AC于F,
由(2)①得:CF=7.2,
∵BD=BC,
∴CD=2CF=7.2×2=14.4,
∴t=14.4÷2=7.2,
∴当t=7.2秒时,,
本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,熟练掌握相关的知识是解题的关键
26、(1)3;50;50 (2)1
【解析】
(1)总人数为40人,所以x为总人数减去已知人数;根据众数的定义,一组数据中出现次数最多的数叫众数,捐款金额50元人数最多则为众数;中位数的定义是将一组数据从大到小的顺序排列,处于最中间位置的数是中位数,如果这组数据的个数是偶数,则是中间两个数据的平均数.
(2)根据平均数的定义求解,本题应是总捐款金额=平均数×总人数.
【详解】
解:(1)x=40-2-8-16-4-7=3;
在几种捐款金额中,捐款金额50元有16人,人数最多,∴捐款金额的众数为50;
将捐款金额按从小到大顺序排列,处于最中间位置的为50和50,所以中位数=(50+50)÷2=50.
(2)由题意得, 20×2+30×8+50×16+3a+80×4+100×7=57×40,解得a=1.
本题考查了平均数、中位数和众数,熟练掌握三者的定义及求解方法是解题的关键.
题号
一
二
三
四
五
总分
得分
捐款金额(元)
20
30
50
a
80
100
人数(人)
2
8
16
x
4
7
2024年西藏达孜中学数学九上开学学业水平测试试题【含答案】: 这是一份2024年西藏达孜中学数学九上开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河南省南阳华龙中学九上数学开学学业水平测试试题【含答案】: 这是一份2024年河南省南阳华龙中学九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年海南省洋浦中学九上数学开学统考模拟试题【含答案】: 这是一份2024-2025学年海南省洋浦中学九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。