|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届贵州省织金县九上数学开学检测试题【含答案】
    立即下载
    加入资料篮
    2025届贵州省织金县九上数学开学检测试题【含答案】01
    2025届贵州省织金县九上数学开学检测试题【含答案】02
    2025届贵州省织金县九上数学开学检测试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届贵州省织金县九上数学开学检测试题【含答案】

    展开
    这是一份2025届贵州省织金县九上数学开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列代数式属于分式的是( )
    A.B.C.D.
    2、(4分)如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长( )
    A.B.1C.D.6
    3、(4分)在反比例函数y图象上有三个点,若x1<0A.B.C.D.
    4、(4分)已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x之间的关系可表示为( )
    A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)
    5、(4分)要使分式有意义,则x应满足的条件是( )
    A.x≠1B.x≠1或x≠0C.x≠0D.x>1
    6、(4分)若分式 有意义,则x的取值范围是
    A.x>1B.x<1C.x≠1D.x≠0
    7、(4分)下列图形既是中心对称图形又是轴对称图形的是( )
    A.B.C.D.
    8、(4分)明明家与学校的图书馆和食堂在同一条直线上,食堂在家和图书馆之间。一天明明先去食堂吃了早餐,接着去图书馆看了一会书,然后回家。如图反应了这个过程中明明离家的距离y与时间x之间的对应关系,下列结论:①明明从家到食堂的平均速度为0.075km/min;②食堂离图书馆0.2km;③明明看书用了30min;④明明从图书馆回家的平均速度是0.08km/min,其中正确的个数是( )
    A.1个B.2个C.3个D.4个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知△ABC∽△ADB,若AD=2,CD=2,则AB的长为_____.
    10、(4分)如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.
    11、(4分)如图,直线AB,IL,JK,DC,相互平行,直线AD,IJ、LK、BC互相平行,四边形ABCD面积为18,四边形EFGH面积为11,则四边形IJKL面积为____.
    12、(4分)请你写出一个一次函数,使它经过二、三、四象限_____.
    13、(4分)古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在矩形中,点在上,,,垂足为.
    (1)求证:;
    (2)若,且,求.
    15、(8分)如图,四边形ABCD是矩形,将一块正方形纸板OEFG如图1摆放,它的顶点O与矩形ABCD的对角线交点重合,点A在正方形的边OG上,现将正方形绕点O逆时针旋转,当点B在OG边上时,停止旋转,在旋转过程中OG交AB于点M,OE交AD于点N.
    (1)开始旋转前,即在图1中,连接NC.
    ①求证:NC=NA(M);
    ②若图1中NA(M)=4,DN=2,请求出线段CD的长度.
    (2)在图2(点B在OG上)中,请问DN、AN、CD这三条线段之间有什么数量关系?写出结论,并说明理由.
    (3)试探究图3中AN、DN、AM、BM这四条线段之间有什么数量关系?写出结论,并说明理由.
    16、(8分)作图题.
    小峰一边哼着歌“我是一条鱼,快乐的游来游去”,一边试着在平面直角坐标系中画出了一条鱼.如图,O(0,0),A(5,4),B(3,0),C(5,1),D(5,-1),E(4,-2).
    (1)作“小鱼”关于原点O的对称图形,其中点O,A,B,C,D,E的对应点分别为O1,A1,B1,C1,D1,E1(不要求写作法);
    (2)写出点A1,E1的坐标.
    17、(10分)如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.
    (1)求点B的坐标;
    (2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;
    (3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.
    18、(10分)如图,AC是平行四边形ABCD的一条对角线,过AC中点O的直线分别交 AD,BC 于点 E,F.
    (1)求证:四边形AECF是平行四边形;
    (2)当 EF 与 AC 满足什么条件时,四边形 AECF 是菱形?并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为______.
    20、(4分)若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.
    21、(4分)任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
    22、(4分)化简:=_______________.
    23、(4分)每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,_____是常量,_____是变量.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)甲、乙、丙三支排球队共同参加一届比赛,由抽签决定其中两队先打一场,然后胜者再和第三队(第一场轮空者)比赛,争夺冠军.
    (1)如果采用在暗盒中放形状大小完全一致的两黑一白三个小球,摸到白色小球的第一场轮空直接晋级进入决赛,那么甲队摸到白色小球的概率是多少?
    (2)如果采用三队各抛一枚硬币,当出现二正一反或二反一正时则由抛出同面的两个队先打一场,而出现三枚同面(同为正面或反面)时,则重新抛,试用“树形图”或表格表示第一轮抽签(抛币)所有可能的结果,并指出必须进行第二轮抽签的概率.
    25、(10分)平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:与x轴交于点C,与直线l1交于点P.
    (1)当k=1时,求点P的坐标;
    (2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;
    (3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.
    26、(12分)用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.
    (1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.
    (2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    形如(A、B均为整式,B中有字母,)的式子是分式,根据分式的定义解答.
    【详解】
    根据分式的定义得到:是分式,、、均不是分式,
    故选:A.
    此题考查分式的定义,熟记定义掌握定义中的A及B的要求是解答问题的关键.
    2、C
    【解析】
    试题解析:∵D、E分别是AB、AC上点,DE//BC,

    ∵AD=2,DB=1,AE=3,

    故选C.
    3、B
    【解析】
    根据反比例函数的性质及反比例函数图象上点的坐标特征解得即可.
    【详解】
    ∵k=-2019<0,
    ∴反比例函数y的图象在二、四象限,在每个象限内,y随x的增大而增大,
    ∵点在反比例函数y图象上,x1<0∴y1>0,y2<0,y3<0,
    ∴y2故选B.
    本题考查了反比例函数y=的性质,k>0时,图象在一、三象限,在各象限内,y随x的增大而减小;k<0时,图象在二、四象限,在各象限内,y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.
    4、C
    【解析】
    直接利用长方形面积求法得出答案.
    【详解】
    解:∵长方形的周长为16cm,其中一边长为xcm,
    ∴另一边长为:(8﹣x)cm,
    ∴y=(8﹣x)x.
    故选C.
    此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.
    5、A
    【解析】
    根据分式有意义的条件:分母≠0,即可得出结论.
    【详解】
    解:由分式有意义,得
    x-1≠0,
    解得x≠1.
    故选:A.
    此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.
    6、C
    【解析】
    分式分母不为0,所以,解得.
    故选:C.
    7、A
    【解析】
    分析:根据轴对称图形与中心对称图形的概念求解.
    详解:A是轴对称图形,是中心对称图形,故A符合题意;
    B不是轴对称图形,是中心对称图形,故B不符合题意;
    C不是轴对称图形,也不是中心对称图形,故C不符合题意;
    D是轴对称图形,不是中心对称图形,故D不符合题意.
    故选A.
    点睛:掌握中心对称图形与轴对称图形的概念:
    轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;
    中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
    8、D
    【解析】
    根据函数图象判断即可.
    【详解】
    解:明明从家到食堂的平均速度为:0.6÷8=0.075km/min,①正确;食堂离图书馆的距离为:0.8-0.6=0.2km,②正确;明明看书的时间:58-28=30min,③正确;明明从图书馆回家的平均速度是:0.8÷(68-58)=0.08km/min,④正确.故选D.
    本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2.
    【解析】
    利用相似三角形的性质即可解决问题.
    【详解】
    ∵△ABC∽△ADB,
    ∴,
    ∴AB2=AD•AC=2×4=8,
    ∵AB>0,
    ∴AB=2,
    故答案为:2.
    此题考查相似三角形的性质定理,相似三角形的对应边成比例.
    10、8或1
    【解析】
    解:如图所示:①当AE=1,DE=2时,
    ∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,
    ∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,
    ∴平行四边形ABCD的周长=2(AB+AD)=8;
    ②当AE=2,DE=1时,同理得:AB=AE=2,
    ∴平行四边形ABCD的周长=2(AB+AD)=1;
    故答案为8或1.
    11、1
    【解析】
    由平行四边形的性质可得,,,,由面积和差关系可求四边形面积.
    【详解】
    解:,,
    四边形是平行四边形,

    同理可得:,,,
    四边形面积四边形面积(四边形面积四边形面积),
    故答案为:1.
    本题考查了平行四边形的判定与性质,由平行四边形的性质得出是解题的关键.
    12、答案不唯一:如y=﹣x﹣1.
    【解析】
    根据已知可画出此函数的简图,再设此一次函数的解析式为:y=kx+b,然后可知:k<0,b<0,即可求得答案.
    【详解】
    ∵图象经过第二、三、四象限,∴如图所示.
    设此一次函数的解析式为:y=kx+b,∴k<0,b<0,∴此题答案不唯一:如y=﹣x﹣1.
    故答案为:答案不唯一:如y=﹣x﹣1.
    本题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用.
    13、25%.
    【解析】
    设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,则当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,甲、乙蜂蜜售出瓶数分别为ax、3bx;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,甲、乙蜂蜜售出瓶数分别为3ax、2bx;列出方程,解方程求出,即可得出结果.
    【详解】
    解:设甲、乙、丙三种麦片的进价分别为a、b、c,丙麦片售出袋数为cx,
    由题意得:,
    解得:,
    ∴,
    故答案为:25%.
    本题考查了方程思想解决实际问题,解题的关键是通过题意列出方程,得出a、b、c的关系,进而求出利润率.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)AD=.
    【解析】
    (1)利用“AAS”证明△ADF≌△EAB即可得;
    (2)证明△AFD是等腰直角三角形,得出AF=DF=AB=4,利用勾股定理即可求出AD.
    【详解】
    (1)证明:在矩形ABCD中,AD∥BC,
    ∴∠AEB=∠DAF,
    又∵DF⊥AE,
    ∴∠DFA=90°,
    ∴∠DFA=∠B,
    在△ADF和△EAB中,,
    ∴△ADF≌△EAB(AAS),
    ∴DF=AB;
    (2)解:∵∠FEC=135°,
    ∴∠AEB=180°−∠FEC=45°,
    ∴∠DAF=∠AEB=45°,
    ∴△AFD是等腰直角三角形,
    ∴AF=DF=AB=4,
    ∴AD=.
    本题主要考查矩形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质及勾股定理;熟练掌握矩形的性质,证明三角形全等是解题的关键.
    15、(1)①证明见解析;②;(1)ND1=NA1+CD1,证明见解析;(3)DN1+BM1=AM1+AN1,证明见解析.
    【解析】
    试题分析:(1)①由矩形的对角线互相平分得OA=OC,根据正方形的内角都是直角,得∠EOG=90°,用线段垂直平分线上的点到两端点的距离相等即可得;②用勾股定理计算即可;(1)连接BN,方法同(1)得到NB=ND,再用勾股定理即可;(3)延长GO交CD于H,连接MN,HN,先判断出BM=DH,OM=OH,再和前两个一样,得出MN=NH,再用勾股定理即可.
    解:(1)①∵四边形ABCD是矩形,∴OA=OC,
    ∵四边形EFGO为正方形,∴∠EOG=90°,
    ∴NC=NA;
    ②由①得,NA=NC=4,DN=1,
    根据勾股定理得CD==;
    (1)结论:ND1=NA1+CD1,连接NB,
    ∵四边形ABCD是矩形,∴OB=OD,AB=CD,
    ∵四边形EFGO为正方形,∴∠EOG=90°,
    ∴ND=NB.
    根据勾股定理得NB1=NA1+AB1=NA1+CD1=ND1;
    (3)结论AN1+AM1=DN1+BM1,
    延长GO交CD于H,连接MN,HN,
    ∵四边形ABCD是矩形,
    ∴OB=OD,∠OBM=∠ODH,
    又∵∠BOM=∠DOH,
    ∴△BOM≌△DOH,
    ∴BM=DH,OM=OH,
    ∵四边形EFGO是正方形,
    ∴∠EOG=90°,
    ∴MN=NH,
    在Rt△NDH中,NH1=DN1+DH1=DN1+BM1,
    在Rt△AMN中,MN1=AM1+AN1,
    ∴DN1+BM1=AM1+AN1.
    16、(1)见解析;(2)A1(-5,-4),E1(-4,2).
    【解析】
    (1)根据网格结构找出点O、A、B、C、D、E关于原点O的对称点O1、A1、B1、C1、D1、E1的位置,然后顺次连接即可;
    (2)根据平面直角坐标系中A1,E1的位置,直接写出点A1,E1的坐标即可.
    【详解】
    (1)如图所示:
    (2)由题意得:A1(-5,-4),E1(-4,2).
    本题主要考查中心对称变换,掌握网格结构准确找出点O、A、B、C、D、E关于原点O的对称点的位置是解题的关键.
    17、 (1) B(0,6);(2) d=﹣t+10;(3)见解析.
    【解析】
    【分析】(1)把A(8,0)代入y=﹣x+b,可求解析式,再求B的坐标;(2)先求点C(0,﹣4),再求直线AC解析式,可设点P(t,﹣t+6),Q(t, t﹣4),所以d=(﹣t+6)﹣(t﹣4);过点M作MG⊥PQ于G,证△OAC≌△GMQ,得QG=OC=4,GM=OA=8;过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,得四边形GHRM是矩形,得HR=GM=8;设GH=RM=k,由△HNQ≌△RMN,得HN=RM=k,NR=QH=4+k,由HR=HN+NR,得k+4+k=8,可得GH=NH=RM=2,HQ=6,由Q(t,t﹣4),得N(t+2,t﹣4+6),代入y=﹣x+6,得t+2=﹣(t+2)+6,求出t=2,再求P(2,),N(4,3),可得PH=,NH=2,最后PN=.
    【详解】解:(1)∵y=﹣x+b交x轴于点A(8,0),
    ∴0=﹣×8+b,b=6,
    ∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);
    (2)∵A(8,0),B(0,6),
    ∴OA=8,OB=6,
    ∵∠AOB=90°,
    ∴AB=10=BC,
    ∴OC=4,
    ∴点C(0,﹣4),设直线AC解析式为y=kx+b’,
    ∴,
    ∴,
    ∴直线AC解析式为y=x﹣4,
    ∵P在直线y=﹣x+6上,
    ∴可设点P(t,﹣t+6),
    ∵PQ∥y轴,且点Q在y=x﹣4 上,
    ∴Q(t, t﹣4),
    ∴d=(﹣t+6)﹣(t﹣4)=﹣t+10;
    (3)过点M作MG⊥PQ于G,
    ∴∠QGM=90°=∠COA,
    ∵PQ∥y轴,
    ∴∠OCA=∠GQM,
    ∵CQ=AM,
    ∴AC=QM,在△OAC与△GMQ中,

    ∴△OAC≌△GMQ,
    ∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,
    ∴∠MGH=∠RHG=∠MRH=90°,
    ∴四边形GHRM是矩形,
    ∴HR=GM=8,可设GH=RM=k,
    ∵△MNQ是等腰直角三角形,
    ∴∠QMN=90°,NQ=NM,
    ∴∠HNQ+∠HQN=90°,
    ∴∠HNQ+∠RNM=90°,
    ∴∠RNM=∠HQN,
    ∴△HNQ≌△RMN,
    ∴HN=RM=k,NR=QH=4+k,
    ∵HR=HN+NR,
    ∴k+4+k=8,
    ∴k=2,
    ∴GH=NH=RM=2,
    ∴HQ=6,
    ∵Q(t,t﹣4),
    ∴N(t+2,t﹣4+6)即 N(t+2,t+2)
    ∵N在直线AB:y=﹣x+6上,
    ∴t+2=﹣(t+2)+6,
    ∴t=2,
    ∴P(2,),N(4,3),
    ∴PH=,NH=2,
    ∴PN=
    =.
    【点睛】本题考核知识点:一次函数综合应用.解题关键点:熟记一次函数性质,运用数形结合思想.
    18、(1)见解析;(2)当EF⊥AC时,四边形 AECF 是菱形,理由见解析
    【解析】
    (1)连接AF,CE,证明△AOE≌△COF,得到AE=CF,利用一组对边平行且相等的四边形是平行四边形;
    (2)根据对角线互相垂直的平行四边形是菱形,即可得出结论.
    【详解】
    (1)如图,连接AF,CE,
    ∵四边形ABCD是平行四边形
    ∴AD∥BC
    ∴∠AEO=∠CFO
    又∵点O为AC的中点
    ∴OA=OC
    在△AOE和△COF中,
    ∵∠AEO=∠CFO,∠AOE=∠COF,OA=OC
    ∴△AOE≌△COF(AAS)
    ∴AE=CF
    又∵AE∥CF
    ∴四边形AECF是平行四边形
    (2)当EF⊥AC时,四边形 AECF 是菱形,理由如下:
    ∵四边形AECF是平行四边形,EF⊥AC
    ∴四边形 AECF 是菱形
    本题考查了平行四边形的判定与性质,菱形的判定,熟练掌握平行四边形的判定定理与菱形的判定定理是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.
    【详解】
    ∵在△ABC中,∠C=90°,AC=4,BC=3,
    ∴AB=5,
    ∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
    ∴AD=AB=5,
    ∴CD=AD−AC=1,
    ∴四边形AEDB的面积为,
    故答案为.
    本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.
    20、1;
    【解析】
    根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.
    【详解】
    解:∵等腰三角形的两条边长分别为3cm,8cm,
    ∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
    ∴等腰三角形的周长=16+16+8=1cm.
    故答案为1.
    本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.
    21、2
    【解析】
    把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.
    【详解】
    ∵2=1×2,∴F(2)=,故(1)是正确的;
    ∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;
    ∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;
    ∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).
    故答案为2.
    本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).
    22、
    【解析】
    分析:首先将分式的分子和分母进行因式分解,然后进行约分化简得出答案.
    详解:原式=.
    点睛:本题主要考查的是分式的化简问题,属于基础题型.学会因式分解是解决这个问题的关键.
    23、电影票的售价 电影票的张数,票房收入.
    【解析】
    根据常量,变量的定义进行填空即可.
    【详解】
    解:常量是电影票的售价,变量是电影票的张数,票房收入,
    故答案为:电影票的售价;电影票的张数,票房收入.
    本题考查了常量和变量,掌握常量和变量的定义是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1);(2).
    【解析】
    (1)在暗盒中放形状大小完全一致的两黑一白三个小球,摸到白色小球的有1种情况,利用概率公式计算即可;
    (2)求出一个回合不能确定两队先比赛的情况,再利用概率公式即可求得答案.
    【详解】
    (1)甲队摸到白色小球的概率是.
    (2)如树状图所示:
    则共有8种等可能的结果;
    ∵由上可知,所有可能结果有8种,而不能确定两队先比赛的结果有2种,
    ∴一个回合不能确定两队先比赛的概率为:=.
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    25、(2)P(,);(2);(3)(,)
    【解析】
    (2把k=2代入l2解析式,当k=2时,直线l2为y=x+2.与l2组成方程组
    , 解这个方程组得:,
    ∴P(,);
    (2)当y=0时,kx+2k=0 ,∵k≠0,∴x=-2,
    ∴C(-2,0),OC=2,当y=0时,-x+3=0,∴x=6,
    ∴A(6,0),OA=6 ,
    过点P作PG⊥DF于点G,
    在△PDG和△ADE中,

    ∴△PDG≌△ADE,
    得DE=DG=DF,
    ∴PD=PF,
    ∴∠PFD=∠PDF
    ∵∠PFD+∠PCA=90°,∠PDF+∠PAC=90°
    ∴∠PCA=∠PAC,
    ∴PC=PA
    过点P作PH⊥CA于点H,
    ∴CH=CA=4,
    ∴OH=2,
    当x=2时,y=−×2+3=2代入y=kx+2k,得k=;
    (3)在Rt△PMC和Rt△PQR中,

    ∴Rt△PMC≌Rt△PQR,
    ∴CM=RQ,
    ∴NR=NC,
    设NR=NC=a,则R(−a−2,a),
    代入y=−x+3,
    得− (−a−2)+3=a,解得a=8,
    设P(m,n),则
    解得
    ∴P(,)
    考点:2.一次函数与二元一次方程组综合题;2.三角形全等的运用.
    26、(1)详见解析;(2)详见解析
    【解析】
    (1)连接AB,EF,交点设为P,射线AP即为所求;
    (2)根据平行四边形的面积公式和三角形的面积公式可得,平行四边形的BC的对边到BC的距离等于A到BC的距离的一半,然后根据平行四边形的对边相等解答.
    【详解】
    解:(1)连接AB,EF,交点设为P,射线AP即为所求;
    (2)如图所示,平行四边形MBCN即为所求.
    本题考查了矩形的性质和平行四边形的判定,熟练掌握性质定理和网格特点是解题关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    2025届贵州省长顺县联考数学九上开学检测模拟试题【含答案】: 这是一份2025届贵州省长顺县联考数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届贵州省石阡县数学九上开学质量检测模拟试题【含答案】: 这是一份2025届贵州省石阡县数学九上开学质量检测模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届贵州省铜仁市思南县九上数学开学复习检测模拟试题【含答案】: 这是一份2025届贵州省铜仁市思南县九上数学开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map