![贵州省毕节市2024年数学九上开学监测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16269721/0-1729377945616/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![贵州省毕节市2024年数学九上开学监测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16269721/0-1729377945652/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![贵州省毕节市2024年数学九上开学监测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16269721/0-1729377945677/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
贵州省毕节市2024年数学九上开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选( )参加.
A.甲B.乙C.甲、乙都可以D.无法确定
2、(4分)实数a,b在数轴上的位置如图所示,则化简代数式|a+b|−a的结果是( )
A.2a+bB.2aC.aD.b
3、(4分)环保部门根据我市一周的检测数据列出下表.这组数据的中位数是
A.B.C.D.
4、(4分)下列计算正确的是( )
A.B.2C.()2=2D.=3
5、(4分)甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s=5,s=12,则甲、乙两个同学的数学成绩比较稳定的是( ).
A.甲B.乙C.甲和乙一样D.无法确定
6、(4分)如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l2、l3、l4上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为( )
A.4cm2B.5cm2C.20cm2D.30cm2
7、(4分)如图,菱形中,,与交于,为延长线上的一点,且,连结分别交,于点,,连结则下列结论:①;②与全等的三角形共有个;③;④由点,,,构成的四边形是菱形.其中正确的是( )
A.①④B.①③④C.①②③D.②③④
8、(4分)如果分式有意义,那么x的取值范围是( )
A.x≠0B.x≤﹣3C.x≥﹣3D.x≠﹣3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于______.
10、(4分)菱形的周长为12,它的一个内角为60°,则菱形的较长的对角线长为______.
11、(4分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.
12、(4分)如图,点A的坐标为,点B在直线上运动则线段AB的长度的最小值是___.
13、(4分)函数y=2x-3的图象向下平移3个单位,所得新图象的函数表达式是___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形是平行四边形,、是对角线上的两个点,且.求证:.
15、(8分)(1)化简;(m+2+)•
(2)先化简,再求值;(+x+2)÷,其中|x|=2
16、(8分)如图,已知E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.请说明四边形BFDE是平行四边形.
17、(10分)如图,已知AD∥BC,AB⊥BC,AB=BC=4,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D
(1)如图1,当P为AB的中点时,求出AD的长
(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°
(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、H两点.设QG=x,QH=y,直接写出y关于x的函数解析式
18、(10分)如图,直线l1经过过点P(1,2),分别交x轴、y轴于点A(2,0),B.
(1)求B点坐标;
(2)点C为x轴负半轴上一点,过点C的直线l2:交线段AB于点D.
①如图1,当点D恰与点P重合时,点Q(t,0)为x轴上一动点,过点Q作QM⊥x轴,分别交直线l1、l2于点M、N.若,MN=2MQ,求t的值;
②如图2,若BC=CD,试判断m,n之间的数量关系并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线与轴、轴分别交于两点,过点作轴与双曲线交于点,过作轴于.若梯形的面积为4,则的值为_____.
A
B
C
D
O
x
y
20、(4分)如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为_____.
21、(4分)等腰三角形的两条中位线分别为3和5,则等腰三角形的周长为_____.
22、(4分)如图,为的中位线,点在上,且为直角,若 ,,则的长为_____.
23、(4分)已知y=(k﹣1)x+k2﹣1是正比例函数,则k=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)己知:,,求下列代数式的值:
(1);
(2).
25、(10分)如图所示,已知△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣6,0),C(﹣1,0).
(1)请直接写出点A关于原点O对称的点坐标;
(1)将△ABC向右平移6个单位,再向上平移3个单位,得到△A1B1C1,画出△A1B1C1;
(3)将△ABC绕点O逆时针转90°,得到△A1B1 C1,画出△A1B1 C1.
26、(12分)如图,在矩形中,点为上一点,连接、,.
(1)如图1,若,,求的长.
(2)如图2,点是的中点,连接并延长交于,为上一点,连接,且,求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;
方差为:=0.8
乙的平均数为:(10+8+9+7+1)÷5=8;
方差为:=2;
∵0.8<2,∴选择甲射击运动员,故选A.
考点:方差.
2、D
【解析】
首先根据数轴可以得到a、b的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.
【详解】
由数轴上各点的位置可知:a<0
故选D.
此题考查整式的加减,实数与数轴,解题关键在于结合数轴分析a,b的大小.
3、C
【解析】
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
【详解】
根据中位数的概念,可知这组数据的中位数为:21
故答案选:C
本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.
4、C
【解析】
利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.
【详解】
解:A、>3>,
∴选项A不正确;
B、,
∴选项B不正确;
C、()2=2,
∴选项C正确;
D、=3,
∴选项D不正确.
故选C.
本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.
5、A
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,
∴S甲2<S乙2,
∴成绩比较稳定的是甲;
故选A.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
6、C
【解析】
过D作直线EF与平行线垂直,交l1与点E,交l4于点F.再证明,得到 ,故可求的CD的长,进而求出正方形的面积.
【详解】
过D作直线EF与l2垂直,交l1与点E,交l4于点F.
,即
四边形ABCD为正方形
在和中
即正方形的面积为20
故选C.
本题主要考查平行线的性质,关键在于利用三角形全等求正方形的边长.
7、A
【解析】
连结,可说明四边形是平行四边形,即是的中点;由有题意的可得O是BD的中点,即可判定①;运用菱形和平行四边形的性质寻找判定全等三角形的条件,找出与其全等的三角形即可判定②;证出OG是△ABD的中位线,得出OG//AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形0DGF=S△ABF.即可判定③;先说明△ABD是等边三角形,则BD=AB,即可判定④.
【详解】
解:如图:连结.
,,
四边形是平行四边形,
是的中点,
∵O是BD的中点
,①正确;
有,,,,,,共个,②错误;
∵OB=OD,AG=DG,
∴OG是△ABD的中位线,
∴OG//AB,OG=AB,
∴△GOD∽△ABD,△ABF∽△OGF,
∵△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,
∴△AFG的面积=△OGF的面积的2倍,
又∵△GOD的面积=△A0G的面积=△B0G的面积,
.∴;不正确;③错误;
是等边三角形.
,
是菱形,④正确.
故答案为A.
本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;考查知识点较多、难道较大,解题的关键在于对所学知识的灵活应用.
8、D
【解析】
根据分式有意义的条件可得x+3≠0,再解即可.
【详解】
由题意得:x+3≠0,
解得:x≠3,
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
根据等边三角形的性质和含30°的直角三角形的性质解答即可.
【详解】
∵在△ABC中,∠B=∠C=60°,
∴∠A=60°,
∵DE⊥AB,
∴∠AED=30°,
∵AD=1,
∴AE=2,
∵BC=6,
∴AC=BC=6,
∴CE=AC−AE=6−2=4.
故答案为4.
本题考查了等边三角形的性质,解题的关键是熟练的掌握等边三角形的性质.
10、3
【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,BD=2OB,菱形的对角线平分一组对角线可得∠ABO=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得AO=AB,再利用勾股定理列式求出OB,即可得解.
【详解】
解:如图所示:
∵菱形ABCD的周长为12,
∴AB=3,AC⊥BD,BD=2OB,
∵∠ABC=60°,
∴∠ABO=∠ABC=30°,
∴AO=AB=×3=,
由勾股定理得,OB===,
∴BD=2OB=3.
故答案为:3.
本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.
11、1
【解析】
【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.
【详解】∵数据6,x,3,3,5,1的众数是3和5,
∴x=5,
则这组数据为1、3、3、5、5、6,
∴这组数据的中位数为=1,
故答案为:1.
【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.
12、
【解析】
当线段AB最短时,直线AB与直线垂直,根据勾股定理求得AB的最短长度.
【详解】
解:当线段AB最短时,直线AB与直线垂直,
过点A作直线l,
因为直线是一、三象限的角平分线,
所以,
所以,
所以,
,即,
所以.
故答案是:.
考查了垂线段最短的性质,一次函数图象上点的坐标特征,勾股定理的应用,熟知垂线段最短是解题的关键.
13、y=2x-6
【解析】
根据“左加右减,上加下减”的原则进行解答即可.
【详解】
解:函数y=2x-3的图像向下平移3个单位,所得新图像的函数表达式是y=2x-6.
故答案为y=2x-6.
本题主要考查一次函数图象的平移,解此题的关键在于熟记“左加右减,上加下减”.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
先根据平行四边形的性质得,,则,再证明得到AE=CF.
【详解】
证明:∵四边形为平行四边形
∴,
∴
∵
∴
∴
本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.
15、(1)m+1;(2)1
【解析】
(1)先对括号里面的式子进行合并,再利用完全平方公式进行计算即可解答.
(2)先合并括号里面的,再把除法变成乘法,约分合并,最后把|x|=2,代入即可.
【详解】
解:(1)原式==m+1;
(2)原式= ,
由|x|=2,得到x=2或﹣2(舍去),
当x=2时,原式=1.
此题考查分式的化简求值,解题关键在于掌握运算法则.
16、证明见解析.
【解析】
连接BD,利用对角线互相平分来证明即可.
【详解】
证明:连接BD,交AC于点O.
∵四边形ABCD是平行四边形
∴OA=OC OB=OD(平行四边形的对角线互相平分)
又∵AE=CF
∴OA﹣AE=OC﹣CF,即OE=OF
∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)
本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.
17、(1)1;(2)见解析;(3)
【解析】
(1)如图1.根据平行线的性质得到∠A=∠B=90°,由折叠的性质得到∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,根据全等三角形的性质得到∠APD=∠EPD,推出 于是得到结论;
(2)如图2.过C作CG⊥AF交AF的延长线于G,推出四边形ABCG是矩形,得到矩形ABCG是正方形,求得CG=CB,根据折叠的性质得到∠CEP=∠B=90°,BC=CE,∠BCP=∠ECP, 根据全等三角形的性质即可得到结论:
(3)如图3,将△OQG沿OM翻折至△OPG,将△OQH沿ON翻折至△ORH,延长PG, RH交于S,推出四边形PORS是正方形,根据勾股定理即可得到结论.
【详解】
解:(1)如图1,连结,
∵AD//BC. AB⊥BC,
∴∠A=∠B=90°
∵将△BPC沿PC翻折至△EPC,
∴∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,
∴∠DEP=90°
∵当P为AB的中点,
∴AP=BP
∴PA=PE
∵PD=PD
∴,
∴
作于,设,则,
由勾股定理得,
解得,
∴
图1
(2)如图2,作交延长线于,易证四边形为正方形
∵∠A=∠B=∠G=90°,
∴四边形ABCG是矩形,
∵AB=BC,
∴矩形ABCG是正方形,
∴CG=CB.
∵将△BPC沿PC翻折至△EPC,
∴∠ FED=90°,CG=CE,
又∵CF=CF
∴,
∴∠ECF=∠GCF,
∴∠BCP+∠GCF=∠PCE+∠FCE=45°
∴∠PCF=45°;
图2
(3)如图3.将△OQG沿OM翻折至OOPG.将△OQH沿ON翻折至△ORH.延长PG, RH交于S,则∠POG=∠QOG.∠ROH=∠QOH, OP=OQ=OR=8,PG=QG=x,QH=RH=y,
∴ ∠POR=2∠MON=90",
∵GH⊥OQ.
∴∠OQG=∠OQH=90° .
∴∠P=∠R=90° ,
∴四边形PORS是正方形。
∴PS=RS=8,∠S=90°,
∴.GS=8-x,HS=8-y.
∴ .
∴
∴
图3
本题考查了折叠的性质,全等三角形的判定和性质,正方形的判定和性质,正确的作出辅助线是解题的关键.
18、 (1) ;(2)①,;②
【解析】
【分析】(1)用待定系数法求解;(2)点Q的位置有两种情况:当点Q在点A左侧,点P的右侧时;当点Q在点P的右侧时,.都有,再根据MN=2MQ,可求t的值;(3)由BC=CD,证△BCO≌△CDE,设C(a,0),D(4+a,-a),并代入解析式,通过解方程组可得.
【详解】解:(1)设直线l1的解析式为y=kx+b,
直线经过点P(2,2),A(4,0),
即, 解得,
直线l1的解析式为y=-x+4;
(2)①∵直线l2过点P(2,2)且,
即直线l2:,
点Q(t,0),M(t,4-t),N(t,),
1. 当点Q在点A左侧,点P的右侧时,
,,
即,解得;
⒉ 当点Q在点A右侧时
,MQ=t-4,
即,解得t=10,
②过点D作DE⊥AC于E ,
∵BC=CD,BO=OA,
∠DBC=∠1+∠ABO=∠BDC=∠2+∠DAE,
∴∠1=∠2,
∴△BCO≌△CDE,
∴OC=ED,BO=CE,
设C(a,0),D(4+a,-a),
则,
解得,
即
【点睛】本题考核知识点:一次函数综合应用. 本题先用待定系数法求解析式,比较容易;后面要根据数形结合,结合线段的和差关系,情况讨论,比较综合;最后一小题要先证明三角形全等,得到线段的关系,再根据这个关系列出方程组,化简得到答案,这也比较难.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-2
【解析】由题意可知,OB=2,OA=2,所以三角形OAB的面积等于2,四边形BCDO的面积等于4-2=2, 点C在双曲线上,所以k=-2
20、
【解析】
在一次函数y=x+4中,分别令x=0, y=0,解相应方程,可求得A、B两点的坐标,由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP⊥AB时,满足条件,根据直角三角形面积的不同表示方法可求得OP的长,即可求得EF的最小值.
【详解】
解:∵一次函数y=x+4中,令x=0,则y=4,令y=0,则x=-3,
∴A(0,4),B(-3,0),
∵PE⊥y轴于点E,PF⊥x轴于点F,
∴四边形PEOF是矩形,且EF=OP,
∵O为定点,P在线段上AB运动,
∴当OP⊥AB时,OP取得最小值,此时EF最小,
∵A(0,4),点B坐标为(-3,0),
∴OA=4,O B=3,
由勾股定理得:AB==5,
∵AB·OP=AO·BO=2S△OAB,
∴OP=,
故答案为:.
本题考查了一次函数图象上点的坐标特点,勾股定理、矩形的判定与性质、最值问题等,熟练掌握相关知识、确定出OP的最小值是解题的关键.
21、22或1.
【解析】
因为三角形中位线的长度是相对应边长的一半,所以此三角形有一条边为6,一条为10;那么就有两种情况,或腰为10,或腰为6,再分别去求三角形的周长.
【详解】
解:∵等腰三角形的两条中位线长分别为3和5,
∴等腰三角形的两边长为6,10,
当腰为6时,则三边长为6,6,10;周长为22;
当腰为10时,则三边长为6,10,10;周长为1;
故答案为:22或1.
此题涉及到三角形中位线与其三边的关系,解答此题时要注意分类讨论,不要漏解.
22、1cm.
【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.
【详解】
∵DE为△ABC的中位线,
∴DE=BC=4(cm),
∵∠AFC为直角,E为AC的中点,
∴FE=AC=3(cm),
∴DF=DE﹣FE=1(cm),
故答案为1cm.
本题考查的是三角形中位线定理,直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
23、-1
【解析】
【分析】根据正比例函数的定义可知k-1≠0,常数项k2-1=0,由此即可求得答案.
【详解】∵y=(k-1)x+k2-1是正比例函数,
∴k-1≠0,k2-1=0,
解得k≠1,k=±1,
∴k=-1,
故答案为-1.
【点睛】本题考查了正比例函数的定义,熟知正比例函数y=kx中一次项系数中不为0,常数项等于0是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1);(2)
【解析】
(1)首先将代数式进行通分,然后根据已知式子,即可得解;
(2)首先根据完全平方差公式,将代数式展开,然后将已知式子转换形式,代入即可得解.
【详解】
∵,,
∴,
(1)
(2)
此题主要考查二次根式的运算,熟练掌握,即可解题.
25、(1)(1,-3);(1)详见解析;(3)详见解析
【解析】
(1)根据关于原点对称的点的特征即可;
(1)根据平移方向画出图形即可;
(3)根据旋转角度及旋转方向画出图形即可.
【详解】
(1)点A关于原点对称的点坐标为(1,-3)
(1)如下图所示,
(3)如下图所示,
本题考查了关于原点对称的点的特征及平移画图,旋转画图问题,解题的关键是明确平移方向或旋转方向.
26、(1);(2)见解析
【解析】
(1)利用等腰直角三角形的性质及勾股定理求AB和AE的长,然后根据矩形的性质求得CD和ED的长,从而利用勾股定理求解;
(2)延长交的延长线于,利用AAS定理证得,得到,,然后求得,从而使问题得解.
【详解】
解:(1)∵矩形,∴
又∵
∴
设,在中,
即
解得:,(舍)
∴
∵矩形∴,
∴
在中,,
∴;
(2)如答图,延长交的延长线于
∵,∴
又∵为的中点,∴
在和中
∴
∴,
∵,
∴
∴
∴
∴
本题考查矩形的性质,勾股定理解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,有一定的综合性,掌握相关性质定理正确推理论证是解题关键.
题号
一
二
三
四
五
总分
得分
2025届贵州省安顺市名校数学九上开学监测试题【含答案】: 这是一份2025届贵州省安顺市名校数学九上开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年期贵州省毕节市九上数学开学学业质量监测试题【含答案】: 这是一份2024年期贵州省毕节市九上数学开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年贵州省毕节市黔西县九上数学开学预测试题【含答案】: 这是一份2024年贵州省毕节市黔西县九上数学开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。