广西南宁马山县联考2024年九上数学开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列不能反映一组数据集中趋势的是( )
A.众数B.中位数C.方差D.平均数
2、(4分)下列计算正确的是( )
A.+=B.2+=C.2×=D.2﹣=
3、(4分)如图,在长方形中,,在上存在一点,沿直线把折叠,使点恰好落在边上的点处,若的面积为,那么折叠的的面积为( )
A.30B.20C.D.
4、(4分)已知32m=8n,则m、n满足的关系正确的是( )
A.4m=nB.5m=3nC.3m=5nD.m=4n
5、(4分)一蓄水池有水40m3,按一定的速度放水,水池里的水量y (m3)与放水时间t(分)有如下关系:
下列结论中正确的是
A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3
C.每分钟的放水量是2m3D.y与t之间的关系式为y=38-2t
6、(4分)不等式的解集在数轴上表示为( )
A.B.C.D.
7、(4分)下列说法正确的是( )
A.两个全等三角形是特殊的位似图形B.两个相似三角形一定是位似图形
C.位似图形的面积比与周长比都和相似比相等D.位似图形不可能存在两个位似中心
8、(4分)在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于( )
A.10cmB.6cmC.5cmD.4cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是________.
10、(4分)如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.
11、(4分)若函数y=(m+1)x+(m2-1) (m为常数)是正比例函数,则m的值是____________。
12、(4分)如图,点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则反比例函数的解析式是______.
13、(4分)自2019年5月30日万州牌楼长江大桥正式通车以来,大放光彩,引万人驻足.市民们纷纷前往打卡、拍照留念,因此牌楼长江大桥成为了万州网红打卡地.周末,小棋和小艺两位同学相约前往参观,小棋骑自行车,小艺步行,她们同时从学校出发,沿同一条路线前往,出发一段时间后小棋发现东西忘了,于是立即以原速返回到学校取,取到东西后又立即以原速追赶小艺并继续前往,到达目的地后等待小艺一起参观(取东西的时间忽略不计),在整个过程两人保持匀速,如图是两人之间的距离与出发时间之间的函数图象如图所示,则当小棋到达目的地时,小艺离目的地还有______米.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,直线y=-x+8与x轴、y轴分别相交于点A,B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.
求:(1)点B′的坐标;
(2)直线AM所对应的函数表达式.
15、(8分)已知关于x的方程x2﹣kx+k2+n=1有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=1.
(1)求证:n<1;
(2)试用k的代数式表示x1;
(3)当n=﹣3时,求k的值.
16、(8分)计算:.
17、(10分)如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.
(1)求证:四边形CDEF是菱形;
(2)若AB=2,BC=3,∠A=120°,求BP的值.
18、(10分)重庆不仅是网红城市,更是拥有长安,力帆等大型车企的一座汽车城,为了更好的推广和销售汽车,每年都会在悦来会展中心举办大型车展.去年该车展期间大众旗下两品牌汽车迈腾和途观L共计销售240辆,迈腾销售均价为每辆20万元,途观L销售均价为每辆30万元,两种车型去年车展期间销售额共计5600万元.
(1)这两种车型在去年车展期间各销售了多少辆?
(2)在今年的该车展上,各大汽车经销商纷纷采取降价促销手段,而途观L坚持不降价,与去年相比,销售均价不变,销量比去年车展期间减少了a%,而迈腾销售均价比去年降低了a%,销量较去年增加了2a%,两种车型今年车展期间销售总额与去年相同,求a的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)过边形的一个顶点共有2条对角线,则该边形的内角和是__度.
20、(4分)如图,点P是边长为5的正方形ABCD内一点,且PB=2,PB⊥BF,垂足为点B,请在射线BF上找一点M,使得以B,M,C为顶点的三角形与ABP相似,则BM=_____.
21、(4分)将直线向右平移2个单位长度,所得直线的解析式为________.
22、(4分)一次函数y=2x-1的图象在轴上的截距为______
23、(4分)如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.
(1)当x≥200时,求y与x之间的函数关系式
(2)若小刚家10月份上网180小时,则他家应付多少元上网费?
(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?
25、(10分)分别按下列要求解答:
(1)将先向左平移个单位,再下移个单位,经过两次变换得到,画出,点的坐标为__________.
(2)将绕顺时针旋转度得到,画出,则点坐标为__________.
(3)在(2)的条件下,求移动的路径长.
26、(12分)为了积极响应国家新农村建设,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为800米,假使宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:
(1)请问村庄能否听到宣传,并说明理由;
(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故答案选C.
考点:统计量的选择.
2、D
【解析】
根据无理数的加法、减法、乘法法则分别计算即可.
【详解】
解:∵ 不能合并,故选项A错误,
∵2+不能合并,故选项B错误,
∵2×=2,故选项C错误,
∵ ,故选项D正确,
故选D.
无理数的运算是本题的考点,熟练掌握其运算法则是解题的关键.
3、D
【解析】
由三角形面积公式可求BF的长,由勾股定理可求AF的长,即可求CF的长,由勾股定理可求DE的长,即可求△ADE的面积.
【详解】
解:∵四边形ABCD是矩形
∴AB=CD=6cm,BC=AD,
∵,
即:
∴BF=8(cm)
在Rt△ABF中,(cm)
∵折叠后与重合,
∴AD=AF=10cm,DE=EF,
∴BC=10cm,
∴FC=BC-BF=10-8=2(cm),
在Rt△EFC中,,
∴,解之得:,
∴(cm2),
故选:D.
本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.
4、B
【解析】
∵32m=8n,
∴(25)m=(23)n,
∴25m=23n,
∴5m=3n.
故选B.
5、C
【解析】
根据表格内的数据,利用待定系数法求出y与t之间的函数关系式,由此可得出D选项错误;由-2<0可得出y随t的增大而减小,A选项错误;代入t=15求出y值,由此可得出:放水时间为15分钟时,水池中水量为10m3,B选项错误;由k=-2可得出每分钟的放水量是2m3,C选项正确.综上即可得出结论.
【详解】
解:设y与t之间的函数关系式为y=kt+b,
将(1,38)、(2,36)代入y=kt+b,
,解得:
∴y与t之间的函数关系式为y=-2t+40,D选项错误;
∵-2<0,
∴y随t的增大而减小,A选项错误;
当t=15时,y=-2×15+40=10,
∴放水时间为15分钟时,水池中水量为10m3,B选项错误;
∵k=-2,
∴每分钟的放水量是2m3,C选项正确.
故选:C.
本题考查一次函数的应用,利用待定系数法求出函数关系式是解题的关键.
6、A
【解析】
先解不等式2x-3≤3得到x≤3,然后利用数轴表示其解集.
【详解】
解:移项得2x≤6,
系数化为1得x≤3,
在数轴上表示为:.
故选:A.
本题考查了在数轴上表示不等式的解集,解一元一次不等式,解题关键在于运用数轴表示不等式的解集比较直观,这也是数形结合思想的应用.
7、D
【解析】
根据位似图形的定义与性质对各个选项进行判断即可.
【详解】
A.全等三角形是特殊的相似三角形,其相似比为1,但是两个全等三角形不一定对应顶点的连线相交于一点,对应边互相平行,故本选项错误,
B.两个位似三角形的对应顶点的连线一定相交于一点,对应边一定互相平行,而相似三角形只要求形状相同、大小不等,并没有位置上的特殊要求,故本选项错误,
C.位似图形的面积的比等于相似比的平方,周长的比等于相似比,故本选项错误,
D.两个位似图形不仅是相似图形,而且对应顶点的连线相交于一点,这一点是唯一的, 故本选项正确.
故选D.
本题主要考查位似图形的定义与性质,1.位似图形对应线段的比等于相似比;2.位似图形的对应角都相等;3.位似图形对应点连线的交点是位似中心;4.位似图形面积的比等于相似比的平方;5.位似图形高、周长的比都等于相似比;6.位似图形对应边互相平行或在同一直线上.
8、A
【解析】
利用平行四边形的对边相等的性质,可知四边长,可求周长.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD=BC=3,AB=CD=2,
∴▱ABCD的周长=2×(AD+AB)=2×(3+2)=10cm.
故选:A.
本题考查了平行四边形的基本性质,平行四边形的对边相等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
设小明答对的题数是x道,则答错或没答的为(20-x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.
【详解】
设小明答对的题数是x道,则答错或没答的为(20-x)道,根据题意可得:
5x-2(20-x)≥60,
解得:x≥14,
∵x为整数,
∴x的最小值为1.
故答案是:1.
考查了一元一次不等式的应用.首先要明确题意,找到关键描述语即可解出所求的解.
10、90°
【解析】
点E到边AD,AB,BC的距离相等,可知可知AE、BE分别为∠DAB、∠ABC的角平分线,然后根据角平分线的定义及三角形内角和求解即可.
【详解】
依题意,可知AE、BE分别为∠DAB、∠ABC的角平分线,
又AD∥BC,
所以,∠DAB+∠CBA=180°,
所以,∠DAB+∠CBA=90°,
即∠EAB+∠EBA=90°,
所以,∠AEB=90°.
故答案为:90°.
本题考查了角平分线的判定,平行四边形的性质,三角形内角和等知识,证明AE、BE分别为∠DAB、∠ABC的角平分线是解答本题的关键.
11、2
【解析】
根据正比例函数的定义列出方程m2-2=2且m+2≠2,依此求得m值即可.
【详解】
解:依题意得:m2-2=2且m+2≠2.
解得m=2,
故答案是:2.
本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2,自变量次数为2.
12、 (x<0)
【解析】
连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结OA,如图,
∵AB⊥x轴,
∴OC∥AB,
∴S△OAB=S△CAB=3,
∵
∴|k|=3,
∵k<0,
∴k=-1.
∴反比例函数的解析式为 (x<0)
故答案为: (x<0).
本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
13、400
【解析】
设小祺的速度为x米/分钟,小艺的速度为y米/分钟,由题意列方程组,可求出小祺的速度与小艺的速度.
【详解】
设小祺的速度为x米/分钟,小艺的速度为y米/分钟
则有:
∴
∴设小祺的速度为130米/分钟,小艺的速度为70米/分钟
∴当小祺到达目的地时,小艺离目的地的距离=米
故答案为:400米
本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解,再找出对应数量关系.
三、解答题(本大题共5个小题,共48分)
14、(1)点B′的坐标为(-4,0);(2)直线AM的函数表达式为y=-x+3.
【解析】
试题分析:(1)分别令y=0,x=0求出直线y=-x+8与x轴、y轴交点A、B的坐标.根据折叠性质可得进而求得点B'的坐标(2)设OM=m则B'M=BM=8-m
根据勾股定理得;m2+42=(8-m)2,求出m=3,所以,M(0,3)设直线AM的解析式为y=kx+b,图象过(6,0)(0,3)代入可求得所以求出直线AM所对应的函数关系式.
试题解析:(1)A(6,0),B(0,8)
OA=6,OB="8" 根据勾股定理得:AB=10
根据折叠性质可得
A B'=AB=10,
O B'=10-6=4
B'(-4,0)
(2)设OM=m则B'M=BM=8-m
根据勾股定理得;
m2+42=(8-m)2
m=3
M(0,3)
设直线AM的解析式为y=kx+b
解得:
直线AM所对应的函数关系式
考点:1.折叠问题;2.一次函数的解析式;3.一次函数图象与坐标轴交点.
15、(3)证明见解析;(3)x3=3﹣k或x3=5﹣k.(3)k=3.
【解析】
(3)方程有两个不相等的实数根,则△>3,建立关于n,k的不等式,由此即可证得结论;(3)根据根与系数的关系,把x3+x3=k代入已知条件(3x3+x3)3﹣8(3x3+x3)+35=3,即可用k的代数式表示x3;(3)首先由(3)知n<﹣k3,又n=﹣3,求出k的范围.再把(3)中求得的关系式代入原方程,即可求出k的值.
【详解】
证明:(3)∵关于x的方程x3﹣kx+k3+n=3有两个不相等的实数根,
∴△=k3﹣4(k3+n)=﹣3k3﹣4n>3,
∴n<﹣k3.
又﹣k3≤3,
∴n<3.
解:(3)∵(3x3+x3)3﹣8(3x3+x3)+35=3,x3+x3=k,
∴(x3+x3+x3)3﹣8(x3+x3+x3)+35=3
∴(x3+k)3﹣8(x3+k)+35=3
∴[(x3+k)﹣3][(x3+k)﹣5]=3
∴x3+k=3或x3+k=5,
∴x3=3﹣k或x3=5﹣k.
(3)∵n<﹣k3,n=﹣3,
∴k3<4,即:﹣3<k<3.
原方程化为:x3﹣kx+k3﹣3=3,
把x3=3﹣k代入,得到k3﹣3k+3=3,
解得k3=3,k3=3(不合题意),
把x3=5﹣k代入,得到3k3﹣35k+33=3,△=﹣39<3,所以此时k不存在.
∴k=3.
本题综合考查了一元二次方程的解法、一元二次方程根的定义、一元二次方程根的判别式、一元二次方程根与系数的关系以及分类讨论的思想,熟练运用相关知识是解决问题的关键.
16、3.
【解析】
根据二次根式的性质化简计算可得.
【详解】
解:原式.
本题主要考查二次根式的加减,解题的关键是掌握二次根式的性质.
17、 (1)证明见解析;(2)BP的值为.
【解析】
(1)利用平行四边形的性质和角平分线的定义可求,可证得结论CD=CF=DE;
(2)过P作于PG⊥BC于G,在Rt△BPG中可求得PG和CG的长,则可求得BG的长,在Rt△BPG中,由勾股定理可求得BP的长.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠EDF=∠DFC,
∵DF平分∠ADC,
∴∠EDF=∠CDF,
∴∠DFC=∠CDF,
∴CD=CF,
同理可得CD=DE,
∴CF=DE,且CF∥DE,
∴四边形CDEF为菱形;
(2)解:如图,过P作PG⊥BC于G,
∵AB=2,BC=3,∠A=120°,且四边形CDEF为菱形,
∴CF=EF=CD=AB=2,∠ECF=∠BCD=∠A=60°,
∴△CEF为等边三角形,
∴CE=CF=2,
∴PC=CE=1,
∴CG=PC=,PG=PC=,
∴BG=BC﹣CG=3﹣=,
在Rt△BPG中,由勾股定理可得BP==,
即BP的值为.
本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和菱形的性质是解题的关键.
18、(1)去年车展期间迈腾销售了160辆,途观L销售了80辆;(2)a的值为12.1.
【解析】
(1)设去年车展期间迈腾销售了x辆,途观L销售了y辆,然后根据题意列出二元一次方程组,解方程组即可;
(2)根据题意,分别利用销售额=销售单价×销售量计算出迈腾和途观今年的销售额,然后列出方程,解方程即可.
【详解】
(1)设去年车展期间迈腾销售了x辆,途观L销售了y辆,
依题意得: 解得 ,
答:去年车展期间迈腾销售了160辆,途观L销售了80辆.
(2)依题意,得:20(1﹣a%)×160(1+2a%)+30×80(1﹣a%)=1600,
整理得:8a﹣0.64a2=0,
解得:a1=12.1,a2=0(舍去).
答:a的值为12.1.
本题主要考查二元一次方程组的应用及一元一次方程的应用,读懂题意列出方程及方程组是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条;多边形内角和定理:(n-2)•180 (n≥3)且n为整数).
【详解】
解:过n边形的一个顶点共有2条对角线,
则n=2+3=5,
该n边形的内角和是(5-2)×180°=1°,
故答案为:1.
本题考查了多边形内角和,熟记多边形内角和定理:(n-2)•180 (n≥3)且n为整数)是解题的关键.
20、2或
【解析】
先利用等角的余角相等得到∠ABP=∠CBM,利用相似三角形的判定方法得到当时,△BAP∽△BCM,即;当时,△BAP∽△BMC,即,然后分别利用比例的性质求BM的长即可.
【详解】
如图,
∵四边形ABCD为正方形,
∴∠ABC=90°,BA=BC,
∵PB⊥BF,
∴∠PBM=90°,
∵∠ABP+∠CBP=90°,∠CBP+∠CBM=90°,
∴∠ABP=∠CBM,
∴当时,△BAP∽△BCM,即,解得BM=2;
当时,△BAP∽△BMC,即,解得BM=,
综上所述,当BM为2或 时,以B,M,C为顶点的三角形与△ABP相似.
故答案为2或.
此题主要考查的是相似三角形的判定和性质,应注意相似三角形的对应顶点不明确时,要分类讨论,不要漏解.
21、y=−3x+1
【解析】
根据“上加下减,左加右减”的平移规律进行解答即可.
【详解】
解:由“左加右减”的原则可知,将直线y=−3x+1向右平移2个单位长度所得函数的解析式为:y=−3(x−2)+1,即y=−3x+1,
故答案为:y=−3x+1.
本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的平移规律是解答此题的关键.
22、-1
【解析】
根据截距的定义:一次函数y=kx+b中,b就是截距,解答即可.
【详解】
解:∵一次函数y=2x-1中b=-1,
∴图象在轴上的截距为-1.
故答案为:-1.
本题考查了一次函数图象上点的坐标特征.
23、1
【解析】
先求得点P(﹣1,4)关于y轴的对称点(1,4),再把对称点代入一次函数y=x+b即可得出b的值.
【详解】
解:∵点P(﹣1,4)关于y轴的对称点(1,4),
∴把(1,4)代入一次函数y=x+b,得1+b=4,
解得b=1,
故答案为1.
本题考查了一次函数图象上点的坐标特征,以及关于y轴对称的点的坐标特征,掌握一次函数的性质和关于y轴对称的点的坐标特征是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y=x-260;(2)小刚家10月份上网180小时应交费40元;(3)他家该月的上网时间是208小时.
【解析】
(1)用待定系数法求解;(2)根据函数图象求解;(3)(把y=52代入y=x-260中可得.
【详解】
(1)设当x≥200时,y与x之间的函数关系式为y=kx+b,
∵图象经过(200,40)(220,70),
∴,解得,
∴此时函数表达式为y=x-260;
(2)根据图象可得小刚家10月份上网180小时应交费40元;
(3)把y=52代入y=x-260中得:x=208,
答:他家该月的上网时间是208小时.
考核知识点:一次函数的应用.数形结合分析问题是关键.
25、(1)(-4,5);(2)(3,-6);(3)
【解析】
(1)分别作出A,B,C的对应点A1,B1,C1即可;
(2)分别作出A,B,C的对应点A2,B2,C2即可;
(3)利用弧长公式计算即可.
【详解】
解:(1)△A1B1C1如图所示,点A1的坐标为(-4,5).
故答案为(-4,5).
(2)△A2B2C2如图所示.C2(3,-6),
故答案为(3,-6)
(3)点A移动的路径长=
本题考查作图——旋转变换,轨迹,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
26、(1)村庄能听到宣传. 理由见解析;(2)村庄总共能听到4分钟的宣传.
【解析】
(1)根据题意村庄A到公路MN的距离为800米<1000米,即可解答
(2)假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响
【详解】
解:(1)村庄能听到宣传.
理由:因为村庄A到公路MN的距离为800米<1000米,所以村庄能听到宣传
(2)如图,假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响,利用勾股定理进行计算即可解答
则AP=AQ=1000米,AB=800米.
∴BP=BQ==600米.
∴PQ=1200米.
、∴影响村庄的时间为:1200÷300=4(分钟).
∴村庄总共能听到4分钟的宣传.
此题考查解直角三角形,利用勾股定理进行计算是解题关键
题号
一
二
三
四
五
总分
得分
放水时间(分)
1
2
3
4
...
水池中水量(m)
38
36
34
32
...
广西南宁市马山县2025届数学九上开学检测试题【含答案】: 这是一份广西南宁市马山县2025届数学九上开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江苏省常州市七校联考九上数学开学达标检测模拟试题【含答案】: 这是一份2025届江苏省常州市七校联考九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届吉林省长春市名校联考数学九上开学达标检测试题【含答案】: 这是一份2025届吉林省长春市名校联考数学九上开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。