广西百色市德保县2025届数学九上开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数的图象大致是( )
A.B.C.D.
2、(4分)PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( )
A.0.25×10-5 B.2.5×10-5B.2.5×10-6C.2.5×10-7
3、(4分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )
A.平均数 B.中位数 C.众数 D.方差
4、(4分)化简的结果是( )
A.5B.-5C.±5D.25
5、(4分)一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是( )
A.至少有1个球是红球B.至少有1个球是白球
C.至少有2个球是红球D.至少有2个球是白球
6、(4分)已知函数y=kx-k的图象如图所示,则k的取值为( )
A.k<0B.k>0C.k≥0D.k≤0
7、(4分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为(▲)
A.-3B.1C.5D.8
8、(4分)如图,在平行四边形ABCD中,下列结论中错误的是( )
A.∠1=∠2B.AB⊥ACC.AB=CDD.∠BAD+∠ABC=180°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)不等式组的解集是________;
10、(4分)点A(a,b)是一次函数y=x+2与反比例函数的图像的交点,则__________。
11、(4分)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
12、(4分)如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为______.
13、(4分)当a=______时,最简二次根式与是同类二次根式.
三、解答题(本大题共5个小题,共48分)
14、(12分)珠海长隆海洋王国暑假期间推出了两套优惠方案:①购买成人票两张以上(包括两张),则儿童票按6折出售;②成人票和儿童票一律按8.5折出售,已知成人票是350元/张,儿童票是240元/张,张华准备暑假期间带家人到长隆海洋王国游玩,准备购买8张成人票和若干张儿童票.
(1)请分别写出两种优惠方案中,购买的总费用y(元)与儿童人数x(人)之间的函数关系式;
(2)对x的取值情况进行分析,说明选择哪种方案购票更省钱.
15、(8分)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:
(1)请写出甲的骑行速度为 米/分,点M的坐标为 ;
(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);
(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.
16、(8分)上午6:00时,甲船从M港出发,以80和速度向东航行。半小时后,乙船也由M港出发,以相同的速度向南航行。上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.
17、(10分)某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图,回答下列问题(1)机动车行驶________小时后加油,中途加油_______升;(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并直接写出自变量t的取值范围;(3)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用?请说明理由。
18、(10分)甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)
若甲、乙射击平均成绩一样,求的值;
在条件下,若是两个连续整数,试问谁发挥的更稳定?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数的图象不经过第_______象限.
20、(4分)如图,△ABC中,∠ACB=90°,CD是斜边上的高,AC=4,BC=3,则CD=______.
21、(4分)将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.
22、(4分)已知反比例函数的图象经过点,则b的值为______.
23、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用的时间相等.甲、乙两个机器人每小时各检测零件多少个?
25、(10分)如图,点E在正方形ABCD内,且∠AEB=90°,AB=10,BE=8,求阴影部分的面积.
26、(12分)如图,在平面直角坐标系中,直线y=x和y=﹣2x+6交于点A.
(1)求点A的坐标;
(2)若点C的坐标为(1,0),连接AC,求△AOC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据k>0必过一三象限, b>0必过一、二、三象限,即可解题.
【详解】
∵y=x+3中k=1>0,b=1>0,
∴函数图象必过一、二、三象限,
故选A.
本题考查了一次函数的图象和性质,属于简单题,熟悉系数与函数图象的位置关系是解题关键.
2、C
【解析】
试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
所以:0.0000025=2.5×10-6;
故选C.
【考点】科学记数法—表示较小的数.
3、D
【解析】
根据方差反映数据的波动情况即可解答.
【详解】
由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.
故选D.
本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
4、A
【解析】
根据开平方的运算法则计算即可.
【详解】
解:==5,
故选:A.
本题考查了开平方运算,关键是掌握基本的运算法则.
5、B
【解析】
A. 至少有1个球是红球是随机事件,选项错误;
B. 至少有1个球是白球是必然事件,选项正确;
C. 至少有2个球是红球是随机事件,选项错误;
D. 至少有2个球是白球是随机事件,选项错误.
故选B.
6、A
【解析】
根据一次函数的性质:当k<0时,函数y=kx-k中y随着x的增加而减小,可确定k的取值范围,再根据图像与y轴的交点即可得出答案.
【详解】
由图象知:函数y=kx-k中y随着x的增大而减小,
所以k<0,
∵交与y轴的正半轴,
∴-k>0,
∴k<0,
故选:A.
考查了一次函数的图象与系数的关系,解题的关键是了解图象与系数的关系,难度不大.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小. 当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.
7、D
【解析】
当点C横坐标为-3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选D.
8、B
【解析】
根据平行四边形的性质逐一进行分析即可得.
【详解】
∵四边形ABCD是平行四边形,
∴AB//CD,AB=CD,AD//BC,故C选项正确,不符合题意;
∵AB//CD,
∴∠1=∠2,故A选项正确,不符合题意;
∵AD//BC,
∴∠BAD+∠ABC=180°,故D选项正确,不符合题意;
无法得到AB⊥AC,故B选项错误,符合题意,
故选B.
本题考查了平行四边形的性质,熟练掌握平行四边形的性质定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1≤x<2
【解析】
先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.
【详解】
,
解①得
x≥1,
解②得
x<2,
∴1≤x<2.
故答案为:1≤x<2.
本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.
10、-8
【解析】
把点A(a,b)分别代入一次函数y=x-1与反比例函数 ,求出a-b与ab的值,代入代数式进行计算即可.
【详解】
∵点A(a,b)是一次函数y=x+2与反比例函数的交点,
∴b=a+2,,即a−b=-2,ab=4,
∴原式=ab(a−b)=4×(-2)=-8.
反比例函数与一次函数的交点问题,对于本题我们可以先分别把点代入两个函数中,在对函数和所求的代数式进行适当变形,然后整体代入即可.
11、2.1
【解析】
根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.
【详解】
连结AP,
在△ABC中,AB=6,AC=8,BC=10,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴四边形AFPE是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=AP,
根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,
∴当AP⊥BC时,△ABP∽△CAB,
∴AP:AC=AB:BC,
∴AP:8=6:10,
∴AP最短时,AP=1.8,
∴当AM最短时,AM=AP÷2=2.1.
故答案为2.1
解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.
12、24
【解析】
由菱形的性质可得AB=5,AC⊥BD,AO=CO,BO=DO=3,由勾股定理可求AO=4,由菱形的面积公式可求解.
【详解】
解:∵菱形ABCD的周长是20,
∴AB=5,AC⊥BD,AO=CO,BO=DO=3,
∴AO==4
∴AC=8,BD=6
∴菱形ABCD的面积=AC×BD=24,
故答案为:24
本题考查了菱形的性质,熟练运用菱形的性质是本题的关键.
13、1.
【解析】
同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.
【详解】
解: ∵最简二次根式与是同类二次根式,
∴a﹣2=10﹣2a, 解得:a=1
故答案为:1.
本题考查同类二次根式.
三、解答题(本大题共5个小题,共48分)
14、(1)当选择方案①时,y=144x+2800;当选择方案②时,y=204x+2380;(2)故当0<x<7时,选择方案②;当x=7时,两种方案费用一样;当x>7时,选择方案①
【解析】
(1)根据题意分别列出两种方案的收费方案的函数关系式;
(2)由(1)找到临界点分类讨论即可.
【详解】
(1)当选择方案①时,y=350×8+0.6×240x=144x+2800
当选择方案②时,y=(350×8+240)x×0.85=204x+2380
(2)当方案①费用高于方案②时
144x+2800>204x+2380
解得x<7
当方案①费用等于方案②时
144x+2800=204x+2380
解得x=7
当方案①费用低于方案②时
144x+2800<204x+2380
解得x>7
故当0<x<7时,选择方案②
当x=7时,两种方案费用一样.
当x>7时,选择方案①
本题是一次函数实际应用问题,考查一次函数性质以及一元一次方程、不等式.解答关键是分类讨论.
15、(1)240,(6,1200);(2)y=﹣240x+2640;(3)经过4分钟或6分钟或8分钟时两人距C地的路程相等.
【解析】
(1)根据函数图象得出AB两地的距离,由行程问题的数量关系由路程时间=速度就可以求出结论;
(2)先由行程问题的数量关系求出M、N的坐标,设y与x之间的函数关系式为y=kx+b,由待定系数法就可以求出结论;
(3) 设甲返回A地之前,经过x分两人距C地的路程相等,可得乙的速度:1200÷20=60(米/分),分别分①当0<x≤3时②当3<x<﹣1时③当<x≤6时④当x=6时⑤当x>6时5种情况讨论可得经过多长时间两人距C地的路程相等.
【详解】
(1)由题意得:甲的骑行速度为: =240(米/分),
240×(11﹣1)÷2=1200(米),
则点M的坐标为(6,1200),
故答案为:240,(6,1200);
(2)设MN的解析式为:y=kx+b(k≠0),
∵y=kx+b(k≠0)的图象过点M(6,1200)、N(11,0),
∴,
解得,
∴直线MN的解析式为:y=﹣240x+2640;
即甲返回时距A地的路程y与时间x之间的函数关系式:y=﹣240x+2640;
(3)设甲返回A地之前,经过x分两人距C地的路程相等,
乙的速度:1200÷20=60(米/分),
如图1所示:∵AB=1200,AC=1020,
∴BC=1200﹣1020=180,
分5种情况:
①当0<x≤3时,1020﹣240x=180﹣60x,
x=>3,
此种情况不符合题意;
②当3<x<﹣1时,即3<x<,甲、乙都在A、C之间,
∴1020﹣240x=60x﹣180,
x=4,
③当<x≤6时,甲在B、C之间,乙在A、C之间,
∴240x﹣1020=60x﹣180,
x=<,
此种情况不符合题意;
④当x=6时,甲到B地,距离C地180米,
乙距C地的距离:6×60﹣180=180(米),
即x=6时两人距C地的路程相等,
⑤当x>6时,甲在返回途中,
当甲在B、C之间时,180﹣[240(x﹣1)﹣1200]=60x﹣180,x=6,
此种情况不符合题意,
当甲在A、C之间时,240(x﹣1)﹣1200﹣180=60x﹣180,
x=8,
综上所述,在甲返回A地之前,经过4分钟或6分钟或8分钟时两人距C地的路程相等.
本题考查了待定系数法一次函数的解析式的运用,一次函数与二元一次方程组的关系的运用,行程问题的数量关系的运用,注意由图像得出有用的信息及分类讨论思想在解题时的应用..
16、两船相距200,画图见解析.
【解析】
根据题意画出图形,利用勾股定理求解即可.
【详解】
解:如图所示,
∵甲船从港口出发,以80的速度向东行驶,
∴MA=80×2=160(km),
∵半个小时后,乙船也由同一港口出发,以相同的速度向南航行,
∴MB=80×1.5=120(km),
∴(km),
∴上午8:00时,甲、乙两船相距200km.
本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键.
17、(1)5,24;(2)Q=42-6t(0≤t≤5);(3)够用,见解析.
【解析】
(1)观察函数图象,即可得出结论;再根据函数图象中t=5时,Q值的变化,即可求出中途加油量;
(2)根据每小时耗油量=总耗油量÷行驶时间,即可求出机动车每小时的耗油量,再根据加油前油箱剩余油量=42-每小时耗油量×行驶时间,即可得出结论;
(3)根据可行驶时间=油箱剩余油量÷每小时耗油量,即可求出续航时间,由路程=速度×时间,即可求出续航路程,将其与230比较后即可得出结论.
【详解】
解:(1)观察函数图象可知:机动车行驶5小时后加油;36-12=24(升),中途加油24升;
(2)机动车每小时的耗油量为(42-12)÷5=6(升),
∴加油前油箱剩余油量Q与行驶时间t的函数关系为Q=42-6t(0≤t≤5);
(3))∵加油后油箱里的油可供行驶11-5=6(小时),
∴剩下的油可行驶6×40=240(千米),
∵240>230,
∴油箱中的油够用.
本题考查了一次函数的应用,解题的关键是:(1)观察函数图象找出结论;根据数量关系,列式计算;(2)根据数量关系,列出函数关系式;(3)利用路程=速度×时间,求出可续航路程.
18、(1);(2)乙更稳定
【解析】
(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出的值;
(2)根据题意令,分别计算甲、乙的方差,方差越小.成绩越稳定.
【详解】
解:(1) (环)
(环)
(2)且为连续的整数
令
,
,
乙更稳定
本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、三
【解析】
根据一次函数的性质,k<0,过二、四象限,b>0,与y轴交于正半轴,综合来看即可得到结论.
【详解】
因为解析式中,-5<0,3>0,图象过一、二、四象限,故图象不经过第三象限.
故答案为:第三象限.
20、2.4
【解析】
在Rt中,由勾股定理可求得AB的长,进而可根据三角形面积的不同表示方法求出CD的长.
【详解】
解:Rt中,AC=4m,BC=3m
AB=m
∵
∴m=2.4m
故答案为2.4 m
本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.
21、8米.
【解析】
在Rt△ABC中,利用勾股定理即可求出BC的值.
【详解】
在Rt△ABC中,AB1=AC1+BC1.
∵AB=10米,AC=6米,∴BC8米,即梯子的底端到墙的底端的距离为8米.
故答案为8米.
本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.
22、-1
【解析】
将点的坐标代入反比例函数解析式即可解答.
【详解】
把点(-1,b)代入y=,得b==-1.
故答案是:-1.
考查了反比例函数图象上点的坐标特征.函数图象上所有点的坐标均满足该函数解析式.
23、1
【解析】
由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.
【详解】
∵CA=CB.∠ACB=90°,CD⊥AB,
∴AD=DB,
∴CD=AB=1,
故答案为1.
本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.
二、解答题(本大题共3个小题,共30分)
24、甲机器人每小时各检测零件30个,乙机器人每小时检测零件20个。
【解析】
设乙机器人每小时检测零件个,则甲机器人每小时各检测零件()个,根据题意列出方程即可.
【详解】
解:设乙机器人每小时检测零件个,则甲机器人每小时各检测零件()个
由题得
解得
检验,符合题意,则甲:.
本题考查的是分式方程,熟练掌握分式方程是解题的关键.
25、76
【解析】
由勾股定理先求出AE=6,然后求出正方形和直角三角形的面积,最后相减可得阴影部分的面积.
【详解】
∵∠AEB=90°,AB=10,BE=8.
∴由勾股定理得, =,
∴,
,
∴.
本题主要考查了勾股定理的应用,也考查了正方形和三角形的面积计算,比较基础.
26、(1)A的坐标(2,2);(2)1.
【解析】
(1)联立y=x和y=﹣2x+6,解方程组即可得到结论;
(2)根据三角形的面积公式即可得到结论.
【详解】
解:(1)∵直线y=x和y=-2x+6交于点A,
∴解得x=y=2,
∴点A的坐标(2,2);
(2)∵点C的坐标为(1,0),
∴OC=1,
∴△AOC的面积=×1×2=1.
本题考查了两直线相交与平行,解二元一次方程组,三角形的面积的计算,以及数形结合的数学思想,掌握的理解题意是解题的关键.
题号
一
二
三
四
五
总分
得分
第1次
第2次
第3次
第4次
第5次
甲
乙
a
b
9
北京临川学校2024年数学九上开学统考模拟试题【含答案】: 这是一份北京临川学校2024年数学九上开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广西省来宾市名校九上数学开学统考试题【含答案】: 这是一份2025届广西省来宾市名校九上数学开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西壮族自治区桂平市九上数学开学统考模拟试题【含答案】: 这是一份2024年广西壮族自治区桂平市九上数学开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。