广西省百色市名校2025届九上数学开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有( )
A.4条 B.5条 C.6条 D.7条
2、(4分)下列式子是最简二次根式的是
A.B.
C.D.
3、(4分)已知函数是反比例函数,则此反比例函数的图象在( )
A.第一、三象限B.第二、四象限
C.第一、四象限D.第二、三象限
4、(4分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是( )
A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF
5、(4分)在函数的图象上的点是( )
A.(-2,12)B.(2,- 12)C.(-4,- 6)D.(4,- 6)
6、(4分)如果分式的值为零,则a的值为( )
A.±1B.2C.﹣2D.以上全不对
7、(4分)如图,已知AB∥CD,OA:OD=1:4,点M、N分别是OC、OD的中点,则ΔABO与四边形CDNM的面积比为( ).
A.1:4B.1:8C.1:12D.1:16
8、(4分)有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,分别以点为圆心,大于的长为半径画弧,两弧交于点,作直线交于点,交于点,连接.若,连接点和的中点,则的长为_______.
10、(4分)如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________________________.
11、(4分)如图,在平面直角坐标系中,点A(0,4),将△ABO沿x轴向右平移得△A′B′O′,与点A对应的点A′正好落在直线y=上.则点B与点B′之间的距离为_____.
12、(4分)如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为_____.
13、(4分)如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位,元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列正确结论的序号是____.
①第24天的销售量为200件;
②第10天销售一件产品的利润是15元;
③第12天与第30天这两天的日销售利润相等;
④第30天的日销售利润是750元.
三、解答题(本大题共5个小题,共48分)
14、(12分)用适当的方法解方程.
(1) (2)
15、(8分)如图,点、分别在矩形的边、上,把这个矩形沿折叠后,点恰好落在边上的点处,且.
(1)求证:;
(2)连接、,试证明:.
16、(8分)如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.
(1)求AG的长;
(2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;
(3)求线段GH所在直线的解析式.
17、(10分)已知:关于的方程.
(1)不解方程,判断方程的根的情况;
(2)若为等腰三角形,腰,另外两条边是方程的 两个根,求此三角形的周长.
18、(10分)已知反比例函数为常数,且).
(1)若在其图像的每个分支上,随的增大而增大,求的取值范围.
(2)若其图象与一次函数y=−x+1图象的一个交点的纵坐标是3,求m的值。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图 ,矩形 ABCD 中,对角线 AC,BD 相交于点 O,若再补充一个条件就能使矩形 ABCD 成为正方形,则这个条件是 (只需填一个条件即可).
20、(4分)如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF的长为_____.
21、(4分)已知命题:全等三角形的对应角相等.这个命题的逆命题是:__________.
22、(4分)如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.
23、(4分)在平面直角坐标系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…,按图所示的方式放置.点A1、A2、A3,…和点B1、B2、B3,…分别在直线y=kx+b和x轴上.已知C1(1,﹣1),C2(,),则点A3的坐标是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.
25、(10分)如图,直线l1的函数解析式为y=﹣2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.
(1)求直线l2的函数解析式;
(2)求△ADC的面积;
(3)在直线l2上是否存在点P,使得△ADP面积是△ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.
26、(12分)解不等式组并把解集在数轴上表示出来
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
根据题意,得
(n-2)•180=1260,
解得n=9,
∴从此多边形一个顶点引出的对角线有9-3=6条,
故选C.
本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.
2、A
【解析】
根据最简二次根式的定义判断即可.
【详解】
A.是最简二次根式;
B.2,不是最简二次根式;
C.,不是最简二次根式;
D.,不是最简二次根式.
故选A.
本题考查了最简二次根式,熟练掌握最简二次根式的定义是解答本题的关键.
3、A
【解析】
首先根据反比例函数的定义,即可得出,进而得出反比例函数解析式,然后根据其性质,即可判定其所在的象限.
【详解】
根据已知条件,得
即
∴函数解析式为
∴此反比例函数的图象在第一、三象限
故答案为A.
此题主要考查反比例函数的性质,熟练掌握,即可解题.
4、D
【解析】
解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;
∴添加BC=EF,利用SAS可得△ABC≌△DEF;
∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;
故选D.
点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.
5、C
【解析】
根据横坐标与纵坐标的乘积为24即可判断.
【详解】
解:∵函数的图象上的点的横坐标与纵坐标的乘积为24,
又∵-2×12=-24,2×(-12)=-24,-4×(-6)=24,4×(-6)=-24,
∴(-4,-6)在的图象上,
故选:C.
本题考查反比例函数图象上的点的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
6、B
【解析】
根据分式的值为零的条件可得:|a|﹣1=2且a+1≠2,从而可求得a的值.
【详解】
解:由题意得:|a|﹣1=2且a+1≠2,
解得:a=1.
故选B.
此题主要考查了分式的值为零的条件,分式的值为零需同时具备两个条件:(1)分子为2;(1)分母不为2.这两个条件缺一不可.
7、C
【解析】
∵AB∥CD,OA:OD=1:4,∴ΔABO与ΔDCO的面积比为1:16
又∵点M、N分别是OC、OD的中点,∴ΔOMN与四边形CDNM的面积比为1:3
∴ΔABO与四边形CDNM的面积比为1:12
8、C
【解析】
试题分析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为.
考点:概率的计算
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由作图可知,MN为AB的垂直平分线,根据线段垂直平分线的性质得到AF=BF=6,且AE=BE,由线段中点的定义得到EG为△ABC的中位线,从而可得出结果.
【详解】
解:∵由作图可知,MN为AB的垂直平分线,
∴AE=BE,=6,
∴.
而是的中位线,
∴.
故答案为:1.
本题考查了基本作图-作已知线段的垂直平分线:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.同时也考查了线段垂直平分线的性质以及三角形的中位线的性质.
10、4.
【解析】
先判定四边形EFGH为矩形,再根据中位线的定理分别求出EF、EH的长度,即可求出四边形EFGH的面积.
【详解】
解:∵四边形ABCD是正方形,点E、F、G、H分别是AB、BC、CD、DA的中点,
∴△AEH、△BEF、△CFG、△DGH都为等腰直角三角形,
∴∠HEF、∠EFG、∠FGH、∠GHE都为直角,
∴四边形EFGH是矩形,
边接AC,则AC=BD=4,
又∵EH是△ABD的中位线,
∴EH=BD=2,
同理EF=AC=2,
∴四边形EFGH的面积为2×2=4.
故答案为4.
本题考查了正方形的性质,矩形的判定,三角形中位线定理.
11、
【解析】
根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.
【详解】
解:如图,连接AA′、BB′.
∵点A的坐标为(0,1),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是1.
又∵点A′在直线y=x上一点,
∴1=x,解得x=.
∴点A′的坐标是(,1),
∴AA′=.
∴根据平移的性质知BB′=AA′=.
故答案为.
本题考查了平面直角坐标系中图形的平移,解题的关键是掌握平移的方向和平移的性质.
12、6
【解析】
首先在Rt△ABC中,∠A=90°,AB=3,BC=5,根据勾股定理,求出AC=4,然后求出以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6,阴影部分的面积为2π+-(-6),即为6.
【详解】
解:∵在Rt△ABC中,∠A=90°,AB=3,BC=5,
∴
以AC为直径的半圆面积为2π,
以AB为直径的半圆面积为,
以BC为直径的半圆面积为,
Rt△ABC的面积为6
阴影部分的面积为2π+-(-6),即为6.
此题主要考查勾股定理和圆面积公式的运用,熟练掌握,即可得解.
13、①②④.
【解析】
图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对①做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,对②做出判断,通过图1求出当0≤t≤24时,产品日销售量y与时间t的函数关系式,分别求出第12天和第30天的销售利润,对③④进行判断,最后综合各个选项得出答案.
【详解】
解:图1反应的是日销售量y与时间t之间的关系图象,过(24,200),因此①是正确的,
由图2可得:z= ,
当t=10时,z=15,因此②也是正确的,
当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=kt+b,
把(0,100),(24,200)代入得:,
解得: ,
∴y=t+100(0≤t≤24),
当t=12时,y=150,z=-12+25=13,
∴第12天的日销售利润为;150×13=1950(元),第30天的销售利润为:150×5=750元,
因此③不正确,④正确,
故答案为:①②④.
本题考查一次函数的应用,分段函数的意义和应用以及待定系数法求函数的关系式等知识,正确的识图,分段求出相应的函数关系式是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2),
【解析】
(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)整理后求出b2﹣4ac的值,再代入公式求出即可.
【详解】
解:(1).
∴.
∴.
(2)
∴
,.
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.
15、 (1)见解析;(2)见解析.
【解析】
(1)由折叠得到D=∠FGH=90°,∠C=∠H=90°,EC=EH,由矩形得出边平行,内角为直角,将问题转化到△EGH中,由30°所对的直角边等于斜边的一半,利用等量代换可得结论;
(2)由轴对称的性质,对称轴垂直平分对应点所连接的线段,垂直于同一直线的两条直线互相平行得出结论.
【详解】
证明:
(1)由折叠知:
在矩形中,
在中,
又
,即
(2)连接、
由折叠知:点和、点和点都关于直线成轴对称
考查矩形的性质、轴对称的性质,直角三角形的性质等知识,合理的将问题转化到一个含有30°的直角三角形是解决问题的关键.
16、(1)AG=1.5;AM+CM最小值为;(3)
【解析】
试题分析:(1)根据折叠的性质可得AG=GH,设AG的长度为x,在Rt△HGB中,利用勾股定理求出x的值;
(2)作点A关于直线y=-1的对称点A',连接CA'与y=-1交于一点,这个就是所求的点,求出此时AM+CM的值;
(3)求出G、H的坐标,然后设出解析式,代入求解即可得出解析式.
试题解析:(1)由折叠的性质可得,AG=GH,AD=DH,GH⊥BD,
∵AB=4,BC=3,
∴BD=,
设AG的长度为x,
∴BG=4-x,HB=5-3=2,
在Rt△BHG中,GH2+HB2=BG2,
x2+4=(4-x)2,
解得:x=1.5,
即AG的长度为1.5;
(2)如图所示:作点A关于直线y=-1的对称点A',连接CA'与y=-1交于M点,
∵点B(5,1),
∴A(1,1),C(5,4),A'(1,-3),
AM+CM=A'C=,
即AM+CM的最小值为;
(3)∵点A(1,1),
∴G(2.5,1),
过点H作HE⊥AD于点E,HF⊥AB于点F,如图所示,
∴△AEH∽△DAB,△HFB∽△DAB,
∴,,
即,,
解得:EH=,HF=,
则点H(,),
设GH所在直线的解析式为y=kx+b,
则,解得:,
则解析式为:.
【点睛】本题考查了一次函数的综合应用,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质以及利用待定系数法求函数解析式等知识,知识点较多,难度较大,解答本题的关键是掌握数形结合的思想.
17、(1)无论为何值,该方程总有两个不相等的实数根;(2)此三角形的周长为或.
【解析】
(1)根据判别式即可求出答案.
(2)由题意可知:该方程的其中一根为5,从而可求出m的值,最后根据m的值即可求出三角形的周长;
【详解】
解:(1),
无论为何值,该方程总有两个不相等的实数根
(2),为等腰三角形,另外两条边是方程的根,
是方程的根.
将代入原方程,得:,解得:.
当时,原方程为,解得:,
能够组成三角形,
该三角形的周长为;
当时,原方程为,解得:,
,能够组成三角形,
该三角形的周长为.
综上所述:此三角形的周长为或.
本题考查一元二次方程,等腰三角形的定义,三角形三边的关系,解题的关键是熟练运用根与系数的关系,本题属于中等题型.
18、(1)m<5;(2)m=-1
【解析】
(1)由反比例函数y= 的性质:当k<0时,在其图象的每个分支上,y随x的增大而增大,进而可得:m-5<0,从而求出m的取值范围;
(2)先将交点的纵坐标y=3代入一次函数y=-x+1中求出交点的横坐标,然后将交点的坐标代入反比例函数y= 中,即可求出m的值.
【详解】
(1)∵在反比例函数y=图象的每个分支上,y随x的增大而增大,
∴m−5<0,
解得:m<5;
(2)将y=3代入y=−x+1中,得:x=−2,
∴反比例函数y=图象与一次函数y=−x+1图象的交点坐标为:(−2,3).
将(−2,3)代入y=得:
3=
解得:m=−1.
此题考查反比例函数与一次函数的交点问题,解题关键在于反比例函数的性质进行解答
一、填空题(本大题共5个小题,每小题4分,共20分)
19、AB=BC(答案不唯一).
【解析】
根据正方形的判定添加条件即可.
【详解】
解:添加的条件可以是AB=BC.理由如下:
∵四边形ABCD是矩形,AB=BC,
∴四边形ABCD是正方形.
故答案为AB=BC(答案不唯一).
本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.
20、5cm
【解析】
设AF=xcm,则DF=(8﹣x)cm,由折叠的性质可得DF=D′F,在Rt△AD′F中,由勾股定理可得x2=42+(8﹣x) 2,解方程求的x的值,即可得AF的长.
【详解】
设AF=xcm,则DF=(8﹣x)cm,
∵矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,
∴DF=D′F,
在Rt△AD′F中,∵AF2=AD′2+D′F2,
∴x2=42+(8﹣x) 2,
解得:x=5(cm).
故答案为:5cm
本题考查了矩形的折叠问题,利用勾股定理列出方程x2=42+(8﹣x) 2是解决问题的关键.
21、对应角相等的三角形全等
【解析】
根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.
【详解】
命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,
故其逆命题是对应角相等的三角形是全等三角形.
故答案是:对应角相等的三角形是全等三角形.
考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
22、35.
【解析】
利用四边形内角和得到∠BAD’,从而得到∠α
【详解】
如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35
本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补
23、(,)
【解析】
试题解析:连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,
∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,
∴A1与C1关于x轴对称,A2与C2关于x轴对称,A3与C3关于x轴对称,
∵C1(1,-1),C2(,),
∴A1(1,1),A2(,),
∴OB1=2OE=2,OB2=OB1+2B1F=2+2×(-2)=5,
将A1与A2的坐标代入y=kx+b中得:,
解得:,
∴直线解析式为y=x+,
设B2G=A3G=t,则有A3坐标为(5+t,t),
代入直线解析式得:b=(5+t)+,
解得:t=,
∴A3坐标为(,).
考点:一次函数综合题.
二、解答题(本大题共3个小题,共30分)
24、4m
【解析】
试题分析:利用已知得出B′E的长,再利用勾股定理得出即可.
解:由题意可得出:B′E=1.4﹣0.6=0.8(m),
则AE=AB﹣0.8,
在Rt△AEB中,
AE2+BE2=AB2,
∴(AB﹣0.8)2+2.42=AB2
解得:AB=4,
答:秋千AB的长为4m.
25、(1)直线l2的函数解析式为y=x﹣1(2)2(2)在直线l2上存在点P(1,﹣4)或(9,4),使得△ADP面积是△ADC面积的2倍.
【解析】
试题分析:(1)根据A、B的坐标,设直线l2的函数解析式为y=kx+b,利用待定系数发求出函数l2的解析式;
(2)由函数的解析式联立方程组,求解方程组,得到C点坐标,令y=-2x+4=0,求出D点坐标,然后求解三角形的面积;
(2)假设存在,根据两三角形面积间的关系|yP|=2|yC|,=4,再根据一次函数图像上点的坐标特征即可求出P点的坐标.
试题解析:(1)设直线l2的函数解析式为y=kx+b,
将A(1,0)、B(4,﹣1)代入y=kx+b,
,解得: ,
∴直线l2的函数解析式为y=x﹣1.
(2)联立两直线解析式成方程组,
,解得: ,
∴点C的坐标为(2,﹣2).
当y=﹣2x+4=0时,x=2,
∴点D的坐标为(2,0).
∴S△ADC=AD•|yC|=×(1﹣2)×2=2.
(2)假设存在.
∵△ADP面积是△ADC面积的2倍,
∴|yP|=2|yC|=4,
当y=x﹣1=﹣4时,x=1,
此时点P的坐标为(1,﹣4);
当y=x﹣1=4时,x=9,
此时点P的坐标为(9,4).
综上所述:在直线l2上存在点P(1,﹣4)或(9,4),使得△ADP面积是△ADC面积的2倍.
26、见解析.
【解析】
先分别求出不等式组中每一个不等式的解集,然后再根据不等式组解集的确定方法确定出不等式组的解集并在数轴上表示出来即可.
【详解】
,
解不等式①得:x≤1,
解不等式②得:x>-4,
所以不等式组的解集为-4
.
本题考查了解一元一次不等式组,熟练掌握解一元一次方程的方法以及解集的确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.
题号
一
二
三
四
五
总分
得分
广西省玉林市名校2024-2025学年九上数学开学经典模拟试题【含答案】: 这是一份广西省玉林市名校2024-2025学年九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广西百色市德保县2025届数学九上开学统考模拟试题【含答案】: 这是一份广西百色市德保县2025届数学九上开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广西省来宾市名校九上数学开学统考试题【含答案】: 这是一份2025届广西省来宾市名校九上数学开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。