广东省深圳市名校2025届数学九年级第一学期开学调研试题【含答案】
展开
这是一份广东省深圳市名校2025届数学九年级第一学期开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一元二次方程的根的情况为( )
A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根
2、(4分)如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数( )
A.当时,随的增大而增大
B.当时,随的增大而减小
C.当时,随的增大而增大
D.当时,随的增大而减小
3、(4分)计算的结果是( )
A.2B.﹣2C.±2D.±4
4、(4分)下列标志中,可以看作是轴对称图形的是( )
A.B.C.D.
5、(4分)如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).
A.线段EF的长逐渐增大B.线段EF的长逐渐减少
C.线段EF的长不变D.线段EF的长不能确定
6、(4分)小颖同学准备用26元买笔和笔记本,已知一支笔2元,一本笔记本3元,他买了5本笔记本,最多还能买多少支笔?设他还能买支笔,则列出的不等式为( )
A.B.
C.D.
7、(4分)如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为( )
A.()7B.2()7C.2()8D.()9
8、(4分)已知菱形的两条对角线的长分别是6和8,则菱形的周长是( )
A.36B.30C.24D.20
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式___________
10、(4分)如图,▱ABCD的对角线AC,BD相交于点O,且AC=4,BD=7,CD=3,则△ABO周长是__.
11、(4分)直线与直线平行,则__________.
12、(4分)化简﹣的结果是_____.
13、(4分)如图所示四个二次函数的图象中,分别对应的是①y=ax1;②y=bx1;③y=cx1;④y=dx1.则a、b、c、d的大小关系为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现DG=BE且DG⊥BE,请你给出证明.
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.
15、(8分)根据条件求二次函数的解析式:
(1)抛物线的顶点坐标为,且与轴交点的坐标为,
(2)抛物线上有三点求此函数解析式.
16、(8分)如图,△ABC中,∠ACB=Rt∠,AB=,BC=,求斜边AB上的高CD.
17、(10分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.
求证:AE∥CF.
18、(10分)(1)分解因式:;
(2)化简:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数y=﹣x﹣3与x轴交点的坐标是_____.
20、(4分)等腰梯形的上底是10cm,下底是16cm,高是4cm,则等腰梯形的周长为______cm.
21、(4分)如图,若菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,则点C的坐标是_____.
22、(4分)已知,则的值等于________.
23、(4分)若的整数部分是a,小数部分是b,则______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
当时,求代数式的值
25、(10分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点,将矩形的一个角沿直线 折叠,使得点 落在对角线 上的点 处,折痕与 轴交于点 .
(1)求直线所对应的函数表达式;
(2)若点 在线段上,在线段 上是否存在点 ,使以 为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
26、(12分)如图所示,在菱形ABCD中,AC是对角线,CD=CE,连接DE.
(1)若AC=16,CD=10,求DE的长.
(2)G是BC上一点,若GC=GF=CH且CH⊥GF,垂足为P,求证:DH=CF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
求出△的值,利用根的判别式与方程根的关系即可判断.
【详解】
一元二次方程中,
a=2,b=3,c=-5,
△=49,
∴方程有两个不相等的实数根,
故选B.
本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根.
2、A
【解析】
根据一次函数的图象对各项分析判断即可.
【详解】
观察图象可知:
A. 当时,图象呈上升趋势,随的增大而增大,正确.
B. 当时,图象呈上升趋势,随的增大而减小, 故错误.
C. 当时,随的增大而减小,当时,随的增大而增大,故错误.
D. 当时,随的增大而减小,当时,随的增大而增大,故错误.
故选A.
考查一次函数的图象与性质,读懂图象是解题的关键.
3、A
【解析】
直接利用二次根式的性质化简即可求出答案.
【详解】
=2
故选:A.
此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.
4、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、不是轴对称图形,是中心对称图形,不符合题意;
D、是轴对称图形,符合题意.
故选D.
本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.
5、C
【解析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
【详解】
如图,连接AR,
∵E、F分别是AP、RP的中点,
∴EF为△APR的中位线,
∴EF= AR,为定值.
∴线段EF的长不改变.
故选:C.
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
6、A
【解析】
设买x支笔,然后根据最多有26元钱列出不等式即可.
【详解】
设可买x支笔
则有:2x+3×5≤26,
故选A.
本题考查的是列一元一次不等式,解此类题目时要注意找出题目中不等关系即为解答本题的关键.
7、B
【解析】
根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.
【详解】
解:∵A0(1,0),
∴OA0=1,
∴点B1的横坐标为1,
∵B1,B2、B3、…、B8在直线y=2x的图象上,
∴B1纵坐标为2,
∴OA1=OB1=,
∴A1(,0),
∴B2点的纵坐标为,
于是得到B3的纵坐标为2…
∴B8的纵坐标为2
故选:B.
本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出Bn的坐标的变化规律.
8、D
【解析】
解:如图所示,根据题意得:AO=×8=4,BO=×6=1.∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=2.故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
原式=2x(y2+2y+1)=2x(y+1)2,
故答案为2x(y+1)2
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
10、8.1.
【解析】
直接利用平行四边形的性质得出AO=CO=2,BO=DO=,DC=AB=3,进而得出答案.
【详解】
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,AB=CD=3,
∵AC=4,BD=7,
∴AO=2,OB=,
∴△ABO的周长=AO+OB+AB=2++3=8.1.
故答案为:8.1.
此题主要考查了平行四边形的性质以及三角形周长的计算,正确得出AO+BO的值是解题关键.
11、
【解析】
根据平行直线的k相同可求解.
【详解】
解:因为直线与直线平行,所以
故答案为:
本题考查了一次函数的图像,当时,直线和直线平行.
12、﹣
【解析】
原式通分并利用同分母分式的减法法则计算即可得到结果
【详解】
原式=
=
=
故答案为:
此题考查分式的加减法,掌握运算法则是解题关键
13、a>b>d>c
【解析】
设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.
【详解】
因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),
所以,a>b>d>c.
本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)S△ADG=1+.
【解析】
(1)利用正方形得到条件,判断出△ADG≌△ABE,根据全等三角形的性质即可得到结论;
(2)利用正方形的性质在Rt△AMD中,∠MDA=45°,AD=2从而得出AM=DM=,在Rt△AMG中,AM2+GM2=AG2从而得出GM=即可.
【详解】
(1)解:如图1,延长EB交DG于点H,
∵四边形ABCD与四边形AEFG是正方形,
∴AD=AB,∠DAG=∠BAE=90°,AG=AE
在△ADG与△ABE中,
∴△ADG≌△ABE(SAS),
∴∠AGD=∠AEB,
∵△ADG中∠AGD+∠ADG=90°,
∴∠AEB+∠ADG=90°,
∵△DEH中,∠AEB+∠ADG+∠DHE=180°,
∴∠DHE=90°,
∴DG⊥BE.
(2)解:如图2,过点A作AM⊥DG交DG于点M,
∠AMD=∠AMG=90°,
∵BD是正方形ABCD的对角,
∴∠MDA=45°
在Rt△AMD中,∵∠MDA=45°,AD=2,
∴AM=DM=,
在Rt△AMG中,
∵AM2+GM2=AG2,
∴GM=,
∵DG=DM+GM=,
∴S△ADG==1+.
此题考查了旋转的性质和正方形的性质,用到的知识点是旋转的性质、全等三角形的判定,勾股定理和正方形的性质,关键是根据题意画出辅助线,构造直角三角形.
15、(1) (2)
【解析】
(1)设抛物线解析式为,根据待定系数法求解即可.
(2)设抛物线的解析式为,根据待定系数法求解即可.
【详解】
(1)∵抛物线的顶点坐标为
∴设抛物线解析式为
将代入中
解得
故抛物线解析式为.
(2)设抛物线的解析式为
将代入中
解得
故抛物线解析式为.
本题考查了抛物线解析式的问题,掌握待定系数法是解题的关键.
16、CD=
【解析】
先根据勾股定理求出AC,再根据等面积法即可求得结果.
【详解】
解:由题意得,
,
,
解得CD=
本题考查的是二次根式的应用,勾股定理的应用,解答本题的关键是掌握好利用等面积法求直角三角形的斜边上的高.
17、证明见解析
【解析】
试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.
证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.
∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF, DE=BF,
∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.
∴AE∥CF.
18、(1) ;(2) .
【解析】
(1)先提取公因式,再根据完全平方公式分解即可;
(2)原式通分并利用分式的加法法则计算即可得到结果
【详解】
解:(1)
=
= ;
(2)
=
=
=
= .
本题考查分解因式和分式的加法运算,能灵活运用知识点进行计算和化简是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(﹣3,0).
【解析】
根据函数与x轴交点的纵坐标为0,令y=0,得到函数与x轴交点的横坐标,即可得到交点坐标.
【详解】
解:当y=0时,-x-3=0,
解得,x=-3,
与x轴的交点坐标为(-3,0).
本题考查了一次函数图象上点的坐标特征,知道x轴上的所有点的纵坐标为0是解题的关键.
20、1.
【解析】
首先根据题意画出图形,过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.
【详解】
解:过A,D作下底BC的垂线,
则BE=CF=(16-10)=3cm,
在直角△ABE中根据勾股定理得到:
AB=CD==5,
所以等腰梯形的周长=10+16+5×2=1cm.
故答案为:1.
本题考查等腰梯形的性质、勾股定理.注意掌握数形结合思想的应用.
21、(﹣5,3)
【解析】
利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
【详解】
∵菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,
∴AB=AD=5=CD,
∴DO===3,
∵CD∥AB,
∴点C的坐标是:(﹣5,3).
故答案为(﹣5,3).
此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.
22、3
【解析】
将通分后,再取倒数可得结果;或将分子分母同除,代入条件即可得结果.
【详解】
方法一:
∵
∴
方法二:
故答案为3.
本题考查分式的求值,从条件入手或从问题入手,都可以得出结果,将分式变形是解题的关键.
23、1.
【解析】
若的整数部分为a,小数部分为b,
∴a=1,b=,
∴a-b==1.
故答案为1.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)9
【解析】
(1)先将所有的二次根式化为最简二次根式,再进行乘法运算,最后进行加法运算.
(2)先将变形为再代入求解即可.
【详解】
解:原式
原式
当时
原式=
本题考查的知识点是二次根式的混合运算,掌握二次根式混合运算的运算顺序以及运算法则是解此题的关键.
25、(1)y=2x-1;(2)存在点,Q(,), 使以为顶点的四边形为平行四边形.
【解析】
(1)由矩形的性质可得出点B的坐标及OA,AB的长,利用勾股定理可求出OB的长,设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2,利用勾股定理可求出a值,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD所对应的函数表达式;
(2)先假设存在点P 满足条件,过E作 交BC于P作,交BD 于Q点,这样得到点Q,四边形 即为所求平行四边形,过E作 得 , 可得E点坐标, 根据点B、E坐标求出直线BD的解析式, 又 根据平行的直线,k值相等,求出PE解析式, 再求点出P坐标,从而求解.
【详解】
(1)由题意,得:点B的坐标为(8,6),OA=8,AB=OC=6,
∴OB= =1.
设AD=a,则DE=a,OD=8-a,OE=OB-BE=1-6=2.
∵OD2=OE2+DE2,即(8-a)2=22+a2,
∴a=3,
∴OD=5,
∴点D的坐标为(5,0).
设直线BD所对应的函数表达式为y=kx+b(k≠0),
将B(8,6),D(5,0)代入y=kx+b,得:
解得: ∴直线BD所对应的函数表达式为y=2x-1.
(2)如图2,假设在线段 上存在点P 使 为顶点的四边形为平行四边形,过E作 交BC于P,过点P作,交BD 于Q点,四边形 即为所求平行四边形,过E作 得 ,,
,
直线 ,
又 , ,
,在线段上存在点P(5,6),
使以为顶点的四边形为平行四边形,
∵,设点Q的坐标为(m,2m-1),四边形DEPQ为平行四边形,
D(5,0),,点P的纵坐标为6,
∴6-(2m-1)=-0,解得:m=,
∴点Q的坐标为(,).
∴存在,点Q的坐标为(,).
本题考查矩形的性质、勾股定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质,熟练掌握和灵活运用相关知识是解题的关键.
26、(1)2(2)见解析
【解析】
(1)连接BD交AC于K.想办法求出DK,EK,利用勾股定理即可解决问题;
(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.想办法证明∠CDH=∠HGJ=45°,可得DH=QH解决问题.
【详解】
(1)解:连接BD交AC于K.
∵四边形ABCD是菱形,
∴AC⊥BD,AK=CK=8,
在Rt△AKD中,DK==6,
∵CD=CE,
∴EK=CE﹣CK=10﹣8=2,
在Rt△DKE中,DE==2.
(2)证明:过H作HQ⊥CD于Q,过G作GJ⊥CD于J.
∵CH⊥GF,
∴∠GJF=∠CQH=∠GPC=90°,
∴∠QCH=∠JGF,
∵CH=GF,
∴△CQH≌△GJF(AAS),
∴QH=CJ,
∵GC=GF,
∴∠QCH=∠JGF=∠CGJ,CJ=FJ=CF,
∵GC=CH,
∴∠CHG=∠CGH,
∴∠CDH+∠QCH=∠HGJ+∠CGJ,
∴∠CDH=∠HGJ,
∵∠GJF=∠CQH=∠GPC=90°,
∴∠CDH=∠HGJ=45°,
∴DH=QH,
∴DH=2QH=CF.
本题考查菱形的性质、勾股定理、全等三角形的判定(AAS)和性质,解题的关键是掌握菱形的性质、勾股定理、全等三角形的判定(AAS)和性质.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份安徽省铜陵市名校2024年九年级数学第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省淮南市名校2025届数学九年级第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届内蒙古通辽市名校数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。