![广东省开平市第二中学2024年九上数学开学学业质量监测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16267095/0-1729298355918/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省开平市第二中学2024年九上数学开学学业质量监测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16267095/0-1729298355966/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省开平市第二中学2024年九上数学开学学业质量监测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16267095/0-1729298356002/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省开平市第二中学2024年九上数学开学学业质量监测试题【含答案】
展开
这是一份广东省开平市第二中学2024年九上数学开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个多边形的每一个内角都是 ,这个多边形是( )
A.四边形B.五边形C.六边形D.八边形
2、(4分)与是同类二次根式的是( )
A.B.C.D.
3、(4分)如图,中,,垂直平分,垂足为,,且,,则的长为( )
A.B.C.D.
4、(4分)某电子产品经过连续两次降价,售价由元降到了元.设平均每月降价的百分率为,根据题意列出的方程是( )
A.B.
C.D.
5、(4分)D、E是△ABC的边AB、AC的中点,△ABC、△ADE的面积分别为S、S1,则下列结论中,错误的是( )
A.DE∥BCB.DE=BCC.S1=SD.S1=S
6、(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()
A.(,1)B.(2,1)
C.(2,)D.(1,)
7、(4分)不等式 的正整数解的个数是( )
A.7个B.6个C.4个D.0个
8、(4分)已知32m=8n,则m、n满足的关系正确的是( )
A.4m=nB.5m=3nC.3m=5nD.m=4n
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,△ABC中,∠ACB=90°,CD是斜边上的高,AC=4,BC=3,则CD=______.
10、(4分)如图,在中,若,点是的中点,则_____.
11、(4分)如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=_____.
12、(4分)如图,一棵大树在离地面4米高的处折断,树顶落在离树底端的5米远处,则大树折断前的高度是______米(结果保留根号).
13、(4分)长方形的周长为,其中一边长为,面积为,则与的关系可表示为___.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)化简求值:,其中.
(2)解不等式组:,并把它的解集在数轴上表示出来.
15、(8分)关于的一元二次方程
求证:方程总有两个实数根
若方程两根且,求的值
16、(8分)解不等式组:,并把它的解集在数轴上表示出来。
17、(10分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,
(1)求点A的坐标;
(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.
18、(10分)某商城经销一款新产品,该产品的进价6元/件,售价为9元/件.工作人员对30天销售情况进行跟踪记录并绘制成图象,图中的折线OAB表示日销售量(件)与销售时间(天)之间的函数关系.
(1)第18天的日销售量是 件
(2)求与之间的函数关系式,并写出的取值范围
(3)日销售利润不低于900元的天数共有多少天?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点是平行四边形的对角线交点,,是边上的点,且;是边上的点,且,若分别表示和的面积,则__________.
20、(4分)如图,在正方形的外侧,作等边,则的度数是__________.
21、(4分)已知方程的解满足x﹣y≥5,则k的取值范围为_____.
22、(4分)如图的三边长分别为30,48,50,以它的三边中点为顶点组成第一个新三角形,再以第一个新三角形三边中点为顶点组成第二个新三角形,如此继续,则第6个新三角形的周长为______.
23、(4分)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=1.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…;以此类推,则第2019个三角形的周长是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.
(1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;
(2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.
①试判断四边形AEMF的形状,并说明理由;
②求折痕EF的长.
25、(10分)如图,将平行四边形的对角线向两个方向延长,分别至点和点,且使.求证:四边形是平行四边形.
26、(12分)如图分别是的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在以下图中各画一个图形,所画图形各顶点必须在小正方形的顶点上,并且分别满足以下要求:
(1)在下图中画一个以线段AB为一边的直角,且的面积为2;
(2)在下图中画一个以线段AB为一边的四边形ABDE,使四边形ABDE是中心对称图形且四边形ABDE的面积为1.连接AD,请直接写出线段AD的长.线段AD的长是________
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据多边形的内角和公式列式计算即可得解.
【详解】
解:设这个多边形是n边形,
由题意得,(n﹣2)•180°=108°•n,
解得n=5,
所以,这个多边形是五边形.
故选B.
本题考查了多边形的内角问题,熟记多边形的内角和公式是解题的关键.
2、B
【解析】
把各选项中的二次根式化为最简二次根式,然后根据同类二次根式的定义判断即可.
【详解】
A、与不是同类二次根式,故A错误;
B、与是同类二次根式,故B正确;
C、与不是同类二次根式,故C错误;
D、与不是同类二次根式,故D错误;
故选:B.
本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.
3、D
【解析】
先根据勾股定理求出AC的长,再根据DE垂直平分AC得出FA的长,根据相似三角形的判定定理得出△AFD∽△CBA,由相似三角形的对应边成比例即可得出结论.
【详解】
解:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,
∴AC=,
∵DE垂直平分AC,垂足为F,
∴FA=AC=,∠AFD=∠B=90°,
∵AD∥BC,
∴∠A=∠C,
∴△AFD∽△CBA,
∴,
即,
解得AD=,
故选D.
本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
4、B
【解析】
可根据:原售价×(1-降价的百分率)2=降低后的售价得出两次降价后的价格,然后即可列出方程.
【详解】
设平均每月降价的百分率为,则依题意得:,故选B.
本题考查列一元二次方程,解题的关键读懂题意,掌握原售价×(1-降价的百分率)2=降低后的售价.
5、D
【解析】
由D、E是△ABC的边AB、AC的中点得出DE是△ABC的中位线,得出DE∥BC,DE=BC,易证△ADE∽△ABC得出,即可得出结果.
【详解】
∵D、E是△ABC的边AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,DE=BC,
∵DE∥BC,∠A=∠A,
∴△ADE∽△ABC,
∴,
即S1=S,
∴D错误,
故选:D.
考查了相似三角形的判定与性质、三角形中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.
6、C
【解析】
由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′=,于是得到结论.
【详解】
解:∵AD′=AD=2,
AO=AB=1,
OD′=,
∵C′D′=2,C′D′∥AB,
∴C′(2,),
故选D.
本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
7、B
【解析】
先解不等式求得不等式的解集,再确定正整数解即可.
【详解】
3(x+1)>2(2x+1)-6
3x+3>4x+2-6
3x-4x>2-6-3
-x>-7
x
相关试卷
这是一份安徽省阜阳九中学2025届九上数学开学学业质量监测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江西省樟树第二中学九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省惠州市第一中学九上数学开学学业质量监测试题【含答案】,共29页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。