广东惠州市惠阳区2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知点都在直线y=3x+b上,则的值的大小关系是( )
A.B.C.D.
2、(4分)若一个多边形的内角和为360°,则这个多边形的边数是( )
A.3 B.4 C.5 D.6
3、(4分)下列命题是假命题的是( )
A.两直线平行,同位角相等B.两组对角分别相等的四边形是平行四边形
C.若,则D.若,则
4、(4分)如图,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=108°,则∠D=( )
A.144°B.110°C.100°D.108°
5、(4分)在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,、从盒子里任意摸出1个球,摸到红球的概率是( )
A.B.C.D.
6、(4分)在某校举行的“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )
A.众数B.方差C.中位数D.平均数
7、(4分)如图,已知▱ABCD的周长为20,∠ADC的平分线DE交AB于点E,若AD=4,则BE的长为( )
A.1B.1.5C.2D.3
8、(4分)△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )
A.14B.4C.14或4D.以上都不对
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在△ABC中,点D,E分别是AB,AC的中点,且DE=3cm,则BC=_____________cm;
10、(4分)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.
11、(4分)已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.
12、(4分)如图,在正方形ABCD的外侧作等边△DEC,则∠AEB=_________度.
13、(4分)分解因式:5x3﹣10x2=_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.
15、(8分)(1)如图,在平行四边形中,过点作 于点 ,交 于点 ,过点 作 于点 ,交 于点 .
①求证:四边形 是平行四边形;
②已知,求的长.
(2)已知函数.
①若函数图象经过原点,求的值
②若这个函数是一次函数,且随着的增大而减小,求的取值范围
16、(8分)如图是三张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上
(1)在图(1)中,点P在小正方形的顶点上,作出点P关于直线AC的对称点Q
(2)在图(2)中,画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上
(3)在图(3)中,B是AC的中点,作线段AB的垂直平分线,要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹
17、(10分)如图,一根竹子高0.9丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?(这是我国古代数学著作《九章算术》中的一个问题,其中的丈、尺是长度单位,1丈=10尺).
18、(10分)如图,四边形ABCD是以坐标原点O为对称中心的矩形,,该矩形的边与坐标轴分别交于点E、F、G、H.
直接写出点C和点D的坐标;
求直线CD的解析式;
判断点在矩形ABCD的内部还是外部,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)▱ABCD中,∠A=50°,则∠D=_____.
20、(4分)已知一次函数y=﹣2x+5,若﹣1≤x≤2,则y的最小值是_____.
21、(4分)不改变分式的值,使分子、分母的第一项系数都是正数,则=_____.
22、(4分)已知关于的方程的一个根是x=-1,则_______.
23、(4分)已知直角坐标系内有四个点A(-1,2),B(3,0),C(1,4),D(x,y),若以A,B,C,D为顶点的四边形是平行四边形,则D点的坐标为___________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某产品生产车间有工人10名,已知每名工人每天可生产甲种产品10个或乙种产品12个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润150元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)求出此车间每天获取利润y(元)与x(人)之间的函数关系式;
(2)若要使此车间每天获取利润为14800元,要派多少名工人去生产甲种产品?
(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?
25、(10分)某欢乐谷为回馈广大谷迷,在暑假期间推出学生个人门票优惠价,各票价如下:
某慈善单位欲购买三种类型的票共100张奖励品学兼优的留守学生,其中购买的B种票数是A种票数的3倍还多7张,C种票y张.
(1)直接写出y与x之间的函数关系式;
(2)设购票总费用为w元,求w(元)与x(张)之间的函数关系式;
(3)为方便学生游玩,计划购买的学生夜场票不低于20张,且每种票至少购买5张,则有几种购票方案?并指出哪种方案费用最少.
26、(12分)解不等式组,并把解集表示在数轴上,再找出它的整数解.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据直线y=1x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
【详解】
解:∵直线y=1x+b,k=1>0,
∴y随x的增大而增大,
又∵-2<-1<1,
∴y1<y2<y1.
故选:C.
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
2、B
【解析】
利用多边形的内角和公式求出n即可.
【详解】
由题意得:(n-2)×180°=360°,
解得n=4;
故答案为:B.
本题考查多边形的内角和,解题关键在于熟练掌握公式.
3、D
【解析】
根据平行线的性质、平行四边形的判定、实数的性质即可判断.
【详解】
A. 两直线平行,同位角相等,正确
B. 两组对角分别相等的四边形是平行四边形,正确
C. 若,则,正确
D. 若>0,则,错误
故选D.
此题主要考查命题的真假,解题的关键是熟知根据平行线的性质、平行四边形的判定、实数的性质.
4、D
【解析】
根据两直线平行,同旁内角互补求出∠B,再根据等腰三角形两底角相等求出∠ACB,然后根据两直线平行,内错角相等可得∠DAC=∠ACB,再根据等腰三角形两底角相等列式计算即可得解.
【详解】
∵AD∥BC,
∴∠B=180°﹣∠BAD=180°﹣108°=72°,
∵BC=AC,
∴∠BAC=∠B=72°,
∴∠ACB=180°﹣2×72°=36°,
∵AD∥BC,
∴∠DAC=∠ACB=36°,
∵AD=CD,
∴∠DCA=∠DAC=36°,
∴∠D=180°﹣36°×2=108°,
故选D.
本题考查了等腰三角形的性质,平行线的性质,熟练掌握相关知识是解题的关键.
5、D
【解析】
根据概率公式计算即可得到答案.
【详解】
∵盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,
∴共有球2+3+4=9个,
∴任意摸出1个红球的概率==,
故选:D.
此题考查简单事件的概率计算公式,正确掌握概率计算公式是解题的关键.
6、C
【解析】
由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义解答即可.
【详解】
解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,
而且5个不同的分数按从大到小排序后,中位数及中位数之前的共有3个数,
故只要知道自己的分数和中位数就可以知道是否进入决赛了;
故选:C.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
7、C
【解析】
只要证明AD=AE=4,AB=CD=6即可解决问题.
【详解】
∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC=4,AB=CD=6,
∴∠AED=∠CDE,
∵DE平分∠ADC,
∴∠ADE=∠EDC,
∴∠ADE=∠AED,
∴AD=AE=4,
∴EB=AB﹣AE=6﹣4=1.
故选:C.
此题考查了平行四边形的性质,等腰三角形的判定等知识,熟练掌握平行四边形的性质是解本题的关键.
8、C
【解析】
分两种情况:△ABC是锐角三角形和△ABC是钝角三角形,都需要先求出BD,CD的长度,在锐角三角形中,利用求解;在钝角三角形中,利用求解.
【详解】
(1)若△ABC是锐角三角形,
在中,
∵
由勾股定理得
在中,
∵
由勾股定理得
∴
(2)若△ABC是钝角三角形,
在中,
∵
由勾股定理得
在中,
∵
由勾股定理得
∴
综上所述,BC的长为14或4
故选:C.
本题主要考查勾股定理,掌握勾股定理并分情况讨论是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由D,E分别是边AB,AC的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得BC的值即可.
【详解】
∵△ABC中,D、E分别是AB、AC边上的中点,
∴DE是三角形的中位线,
∵DE=3cm,
∴BC=2DE=1cm.
故答案为:1.
本题重点考查了中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
10、
【解析】
延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.
【详解】
延长AB至M,使BM=AE,连接FM,
∵四边形ABCD是菱形,∠ADC=120°
∴AB=AD,∠A=60°,
∵BM=AE,
∴AD=ME,
∵△DEF为等边三角形,
∴∠DAE=∠DFE=60°,DE=EF=FD,
∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,
∴∠MEF=∠ADE,
∴△DAE≌EMF(SAS),
∴AE=MF,∠M=∠A=60°,
又∵BM=AE,
∴△BMF是等边三角形,
∴BF=AE,
∵AE=t,CF=2t,
∴BC=CF+BF=2t+t=3t,
∵BC=4,
∴3t=4,
∴t=
考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.
11、
【解析】
直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.
【详解】
如图所示:
关于x的不等式kx+b>0的解集是:x<1.
故答案为:x<1.
此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.
12、1
【解析】
根据正方形和等边三角形的性质证明△ADE是等腰三角形,由此可以求出∠DEA,同理求出∠CEB即可解决问题.
【详解】
解:∵四边形ABCD是正方形,
∴∠ADC=90°,CD=AD,
∵△DCE是正三角形,
∴DE=DC=AD,∠CDE=∠DEC=60°,
∴△ADE是等腰三角形,∠ADE=90°+60°=150°,
∴∠DAE=∠DEA==15°,
同理可得:∠CBE=∠CEB=15°,
∴∠AEB=∠DEC―∠DEA―∠CEB=60°-15°-15°=1°,
故答案为:1.
此题主要考查了正方形和等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,灵活运用相关性质定理是解题的关键.
13、5x2(x-2)
【解析】
5x3-10x2=2x2(x-2)
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是▱ABCD边AD、BC的中点,可得DE=BF,继而证得四边形BFDE是平行四边形,即可证得结论.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵点E、F分别是▱ABCD边AD、BC的中点,
∴DE=AD,BF=BC,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE=DF.
本题主要考查平行四边形的判定与性质定理,掌握对边平行且相等的四边形是平行四边形,是解题的关键.
15、(1)①详见解析;②13;(2)①m=3;②
【解析】
(1)①只要证明DN∥BM,DM∥BN即可;
②只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;
(2)①根据待定系数法,只需把原点代入即可求解;
②直线y=kx+b中,y随x的增大而减小说明k<1.
【详解】
(1)①ABCD是平行四边形,
又 ,
∴DN∥BM,
∴四边形 是平行四边形;
②解:∵四边形BMDN是平行四边形,
∴DM=BN,
∵CD=AB,CD∥AB,
∴CM=AN,∠MCE=∠NAF,
∵∠CEM=∠AFN=91°,
∴△CEM≌△AFN(AAS),
∴FN=EM=5,
在Rt△AFN中,CM=;
(2)①,∵函数图象经过原点
代入解析式, 即m-3=1,m=3;
②根据y随x的增大而减小说明k<1,
即:
解得:
∴的取值范围是:.
本题考查一次函数的性质,平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
16、(1)见解析;(2)见解析;(3)见解析
【解析】
(1)利用数形结合的思想解决问题即可.
(2)构造边长分别为,的矩形即可.
(3)取格点M,N,作直线MN交AC于E,取格点F,作直线EF,直线EF 即为所求.
【详解】
解:
(1)如图1所示.Q为所求
(2)如图2所示,矩形ABCD为所求
(3)取格点M,N,作直线MN交AC于E,取格点F,作直线EF,直线EF即为所求
本题主要考查了线段垂直平分线的性质,矩形的判定与性质,作图-轴对称变换,掌握线段垂直平分线的性质,矩形的判定与性质,作图-轴对称变换是解题的关键.
17、4尺
【解析】
杆子折断后刚好构成一直角三角形,设杆子折断处离地面的高度是x尺,则斜边为(9-x)尺.利用勾股定理解题即可.
【详解】
0.9丈=9尺
设杆子折断处离地面尺,则斜边为(9-)尺,
根据勾股定理得:,
解得:=4,
答:折断处离地面的高度是4尺.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
18、(1).,(2)直线CD的解析式的解析式为:;(3)点在矩形ABCD的外部.
【解析】
根据中心对称的性质即可解决问题;
利用待定系数法求出直线CD的解析式;
根据直线CD的解析式,判定点与直线CD的位置关系即可解决问题.
【详解】
、C关于原点对称,,
,
、D关于原点对称,,
,
设直线CD的解析式为:,
把,代入得:,
解得:,
直线CD的解析式的解析式为:;
:;
时,,
,
点在直线CD的下方,
点在矩形ABCD的外部.
本题考查了中心对称的性质、一次函数图象上点的坐标特征和用待定系数法求一次函数的解析式,能求出一次函数的解析式是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、130°
【解析】
根据平行四边形的邻角互补,则∠D=
20、1
【解析】
根据一次函数的性质得出其增减性,进而解答即可.
【详解】
解:∵一次函数y=﹣2x+5,k=﹣2<0,
∴y随x的增大而减小,
∵﹣1≤x≤2,
∴当x=2时,y的最小值是1,
故答案为:1
此题主要考查了一次函数,根据一次函数的性质得出其增减性是解答此题的关键.
21、
【解析】
根据分式的基本性质即可求出答案.
【详解】
原式==,
故答案为:
本题考查分式的基本性质,分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变;熟练掌握分式的基本性质是解题关键.
22、
【解析】
试题分析:因为方程的一个根是x=-1,所以把x=-1代入方程得,所以,所以.
考点:一元二次方程的根.
23、 (5,2),(-3,6),(1,-2) .
【解析】
D的位置分三种情况分析;由平行四边形对边平行关系,用平移规律求出对应点坐标.
【详解】
解:根据平移性质可以得到AB对应DC,所以,由B,C的坐标关系可以推出A,D的坐标关系,即D(-1-2,2+4),所以D点的坐标为(-3,6);
同理,当AB与CD对应时,D点的坐标为(5,2);
当AC与BD对应时,D点的坐标为(1,-2)
故答案为:(5,2),(-3,6),(1,-2).
本题考核知识点:平行四边形和平移.解题关键点:用平移求出点的坐标.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-800x+18000;(2)安排4人生产甲产品;(3)至少要派7名工人生产乙产品.
【解析】
(1)根据利润计算方法分别表示出甲产品、乙产品的利润,最后求和即得y,
(2)把y=14800代入y与x的函数关系式,求出x的值,
(3)列不等式求出x的取值范围,进而求出生产乙产品的人数的取值范围,确定至少安排乙产品的人数.
【详解】
解:(1)设每天安排x名工人生产甲种产品,则有(10-x)人生产乙产品,
y=10x×100+12(10-x)×150=-800x+18000,
答:每天获取利润y(元)与x(人)之间的函数关系式为y=-800x+18000;
(2)当y=14800时,即:-800x+18000=14800,
解得:x=4,
答:安排4人生产甲产品;
(3)由题意得:
-800x+18000≥15600,
解得:x≤3,
当x≤3时,10-x≥7,
因此至少要派7名工人生产乙产品.
本题考查一次函数的应用以及一元一次不等式的应用等知识,根据已知得出y与x之间的函数关系是解题关键.
25、(1)y=93-4x;(2)w=-160x+14790;(3) 共有3种购票方案, 当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.
【解析】
试题分析:(1)根据总票数为100得到x+3x+7+y=100,然后用x表示y即可;
(2)利用表中数据把三种票的费用加起来得到w=80x+120(3x+7)+150(93-4x),然后整理即可;
(3)根据题意得到,再解不等式组且确定不等式组的整数解为20、21、22,于是得到共有3种购票方案,然后根据一次函数的性质求w的最小值.
试题解析:解:(1)x+3x+7+y=100,
所以y=93-4x;
(2)w=80x+120(3x+7)+150(93-4x)
=-160x+14790;
(3)依题意得,
解得20≤x≤22,
因为整数x为20、21、22,
所以共有3种购票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);
而w=-160x+14790,
因为k=-160<0,
所以y随x的增大而减小,
所以当x=22时,y最小=22×(-160)+14790=11270,
即当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.
考点:1.一次函数的应用;2.一元一次不等式组的应用.
26、,图详见解析
【解析】
分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,结合数轴可知其整数解.
【详解】
解不等式①得,
解不等式②得,
则不等式组的解集为
在数轴上表示为:
其整数解为:-1,0,1.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
票价种类
(A)学生夜场票
(B)学生日通票
(C)节假日通票
单价(元)
80
120
150
2024-2025学年广东实验中学九年级数学第一学期开学监测试题【含答案】: 这是一份2024-2025学年广东实验中学九年级数学第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省惠州市英华学校九年级数学第一学期开学联考模拟试题【含答案】: 这是一份2024-2025学年广东省惠州市英华学校九年级数学第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省惠州市培英学校2024-2025学年九年级上学期+开学数学模拟试题: 这是一份广东省惠州市培英学校2024-2025学年九年级上学期+开学数学模拟试题,共12页。