2024-2025学年广东省惠州市英华学校九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是( )
A.4,1B.4,2C.5,1D.5,2
2、(4分)如图,先将矩形ABCD沿三等分线折叠后得到折痕PQ,再将纸片折叠,使得点A落在折痕PQ上E点处,此时折痕为BF,且AB=1.则AF的长为( )
A.4B.C.D.
3、(4分)下列4个命题:
①对角线相等且互相平分的四边形是正方形;
②有三个角是直角的四边形是矩形;
③对角线互相垂直的平行四边形是菱形;
④一组对边平行,另一组对边相等的四边形是平行四边形
其中正确的是( )
A.②③B.②C.①②④D.③④
4、(4分)下列方程是一元二次方程的是( )
A.B.C.D.
5、(4分)一组数据11、12、15、12、11,下列说法正确的是( )
A.中位数是15B.众数是12
C.中位数是11、12D.众数是11、12
6、(4分)直线y=kx+k﹣2经过点(m,n+1)和(m+1,2n+3),且﹣2<k<0,则n的取值范围是( )
A.﹣2<n<0B.﹣4<n<﹣2C.﹣4<n<0D.0<n<﹣2
7、(4分)已知,则下列不等式中不正确的是( )
A.B.C.D.
8、(4分) “单词的记忆效率“是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.如图描述了某次单词复习中小华,小红小刚和小强四位同学的单词记忆效率y与复习的单词个数x的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )
A.小华B.小红C.小刚D.小强
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)秀水村的耕地面积是平方米,这个村的人均占地面积(单位:平方米)随这个村人数的变化而变化.则与的函数解析式为______.
10、(4分)在4个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8个红球.2个白球,3号袋中有5个红球.5个白球,4号袋中有2个红球,8个白球.从各个袋子中任意摸出1个球,摸到白球的可能性最大的是_____(填袋子号).
11、(4分) 已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,BP=.下列结论:
①△APD≌△AEB;②点B到直线AE的距离为;
③S△APD+S△APB=+;④S正方形ABCD=4+.
其中正确结论的序号是_____.
12、(4分)如图,在边长为1的正方形网格中,两格点之间的距离为__________1.(填“”,“ ”或“”).
13、(4分)如图,在平面直角坐标系xOy中,平行四边形ABCD的四个顶点A,B,C,D是整点(横、纵坐标都是整数),则平行四边形ABCD的面积是_____
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形.
(2)当AM的值为何值时,四边形AMDN是矩形,请说明理由.
15、(8分)如图,直线l1过点A(0,4),点D(4,0),直线l2:与x轴交于点C,两直线,相交于点B.
(1)求直线的解析式和点B的坐标;
(2)求△ABC的面积.
16、(8分)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.
17、(10分)为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.
若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?
若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?
在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
18、(10分)如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A、
(1)求证:四边形ACED是矩形;
(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 .
20、(4分)如图,直线l1:y=x+1与直线l2:y=kx+b相交于点P(m,3),则关于x的不等式x+1≤kx+b的解集为__________.
21、(4分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为_____.
22、(4分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是___.
23、(4分)如图,⊙O 是△ABC 的外接圆,已知∠ABO=30º,则∠ACB 的为_____º.
二、解答题(本大题共3个小题,共30分)
24、(8分)在菱形ABCD中,AC是对角线.
(1)如图①,若AB=6,则菱形ABCD的周长为______;若∠DAB=70º,则∠D的度数是_____;∠DCA的度数是____;
(2)如图②,P是AB上一点,连接DP交对角线AC于点E,连接EB,求证: ∠APD=∠EBC.
25、(10分)如图所示,AE是∠BAC的角平分线,EB⊥AB于B,EC⊥AC于C,D是AE上一点,求证:BD=CD.
26、(12分)如图,在矩形中,对角线、相交于点.若,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.
【详解】
数据1,3,4,4,4,5,5,6的众数是4,
,
则s2==2,
故选B.
本题考查方差和众数,解答本题的关键是明确众数的定义,会求一组数据的方差.
2、C
【解析】
作EM⊥AD于M,交BC于N.只要证明△EMB∽△BNE,可得BE:EF=BN:EM,由此即可解决问题.
【详解】
解:作EM⊥AD于M,交BC于N.
在Rt△BEN中,BE=AB=1,EN=6,
∴BN=,
∵∠FEM+∠BEN=10°,∠BEN+∠EBN=10°,
∴∠FEM=∠EBN,∵∠FME=∠ENB=10°,
∴△EMB∽△BNE,
∴BE:EF=BN:EM,
∴1:EF=3:3,
∴EF=,
∴AF=EF=.
故选C.
本题考查翻折变换、矩形的性质、相似三角形的判定和性质等知识,解题的关键是准确寻找相似三角形解决问题,属于中考常考题型.
3、A
【解析】
根据正方形的判定,矩形的判定、菱形的判定和平行四边形的判定判断即可
【详解】
①对角线相等且互相垂直平分的四边形是正方形,少“垂直”,故错;
②四边形的三个角是直角,由内角和为360°知,第四个角必是直角,正确;
③平行四边形对角线互相平分,加上对角线互相垂直,是菱形,故正确;
④有可能是等腰梯形,故错,
正确的是②③
此题考查正方形的判定,矩形的判定、菱形的判定和平行四边形的判定,解题关键在于掌握判定定理
4、B
【解析】
本题根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.据此即可判断.
【详解】
解:A、含有2个未知数,不是一元二次方程,故选项不符合题意;
B、只有一个未知数且最高次数为2,是一元二次方程,选项符合题意;
C、不是整式方程,则不是一元二次方程,选项不符合题意;
D、整理后得,最高次数为1,不是二次方程,选项不符合题意;
故选:B.
本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.
5、D
【解析】
根据中位数、众数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:11、11、1、1、15,
则中位数是1,
众数是11、1.
故选D.
本题考查了中位数、众数的知识,掌握各知识点的概念是解答本题的关键.
6、B
【解析】
(方法一)根据一次函数图象上点的坐标特征可求出n=k﹣1,再结合k的取值范围,即可求出n的取值范围;
(方法二)利用一次函数k的几何意义,可得出k=n+1,再结合k的取值范围,即可求出n的取值范围.
【详解】
解:(方法一)∵直线y=kx+k﹣1经过点(m,n+1)和(m+1,1n+3),
∴ ,
∴n=k﹣1.
又∵﹣1<k<0,
∴﹣4<n<﹣1.
(方法二)∵直线y=kx+k﹣1经过点(m,n+1)和(m+1,1n+3),
∴ .
∵﹣1<k<0,即﹣1<n+1<0,
∴﹣4<n<﹣1.
故选B.
本题考查了一次函数图象上点的坐标特征,解题的关键是:(方法一)牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”;(方法二)根据一次函数k的几何意义找出关于n的一元一次不等式.
7、D
【解析】
根据不等式的性质逐项分析即可.
【详解】
A. ∵,∴ ,故正确;
B. ∵,∴,故正确;
C. ∵,∴,故正确;
D. ∵,∴,故不正确;
故选D.
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
8、C
【解析】
根据小华,小红,小刚和小强四位同学的单词记忆效率y与复习的单词个数x的情况的图表,回答问题即可.
【详解】
解:由图可得:小华同学的单词的记忆效率最高,但复习个数最少,小强同学的复习个数最多,但记忆效率最低,小红和小刚两位同学的记忆效率基本相同,但是小刚同学复习个数较多,所以这四位同学在这次单词复习中正确默写出的单词个数最多的是小刚.
故选:C.
本题考查函数的图象,正确理解题目的意思是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
人均耕地面积即耕地总面积除以人数,y随着n的变化而变化,因此,n是自变量,y是因变量。
【详解】
根据题意可列出
此题考查根据实际问题列反比例函数关系式,解题关键在于列出解析式
10、1
【解析】
要求可能性的大小,只需求出各自所占的比例大小即可.
【详解】
解:1号袋子摸到白球的可能性=0;
2号袋子摸到白球的可能性=;
3号袋子摸到白球的可能性=;
1号个袋子摸到白球的可能性=,
所以摸到白球的可能性最大的是1.
本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.
11、①③④
【解析】
由题意可得△ABE≌△APD,故①正确,可得∠APD=∠AEB=135°,则∠PEB=90°,由勾股定理可得BE,作BM⊥AE于M,可得△BEM是等腰直角三角形,
可得BM=EM=,故②错误,根据面积公式即可求S△APD+S△APB,S正方形ABCD,根据计算结果可判断.
【详解】
解:∵正方形ABCD
∴AB=AD,∠BAD=90°
又∵∠EAP=90°
∴∠BAE=∠PAD,AE=AP,AB=AD
∴△AEB≌△APD故①正确
作BM⊥AE于M,
∵AE=AP=1,∠EAP=90°
∴EP=,∠APE=45°=∠AEP
∴∠APD=135°
∵△AEP≌△APD,
∴∠AEB=135°
∴∠BEP=90°
∴BE
∵∠M=90°,∠BEM=45°
∴∠BEM=∠EBM=45°
∴BE=MB 且BE=,
∴BM=ME=,故②错误
∵S△APD+S△APB=S四边形AMBP﹣S△BEM
故③正确
∵S正方形ABCD=AB2=AE2+BE2
∴S正方形ABCD 故④正确
∴正确的有①③④
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,关键是构造直角三角形求出点B到直线AE的距离.
12、<
【解析】
根据勾股定理即可得到结论.
【详解】
解:点A,B之间的距离d=<1,
故答案为:<.
本题考查了勾股定理,熟练掌握勾股定理是解题的关键.
13、1
【解析】
结合网格特点利用平行四边形的面积公式进行求解即可.
【详解】
由题意AD=5,平行四边形ABCD的AD边上的高为3,
∴S平行四边形ABCD=5×3=1,
故答案为:1.
本题考查了网格问题,平行四边形的面积,熟练掌握网格的结构特征以及平行四边形的面积公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)AM=1.理由见解析.
【解析】
解:(1)∵四边形ABCD是菱形,∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
∵点E是AD中点,∴DE=AE,
在△NDE和△MAE中,,
∴△NDE≌△MAE(AAS),∴ND=MA,
∴四边形AMDN是平行四边形;
(2)解:当AM=1时,四边形AMDN是矩形.
理由如下:
∵四边形ABCD是菱形,∴AD=AB=2,
∵平行四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,
∵∠DAB=60°,∴∠ADM=30°,
∴AM=AD=1.
本题考查矩形的判定;平行四边形的判定;菱形的性质.
15、(1)直线的解析式为y=-x+1,点B的坐标为(2,2);(2).
【解析】
分析:(1)根据题意l1经过A、B两点,又直线的解析式为y=ax+b,代入可得a、b的值.
(2)由图可知△ACB的面积为△ACD与△CBD的差,所以求得△ACD与△BCD的面积即可知△ACB的面积.
详解:(1)设l1的解析式为:y=ax+b.
∵l1经过A(0,1),D(1,0),
∴将A、D代入解析式得:b=1,1a+b=0,
∴a=﹣1,b=1.
即l1的解析式为:y=﹣x+1,
l1与l2联立,得:B(2,2);
(2)C是l2与x轴的交点,在y=x+1中所以令y=0,得:C(﹣2,0),
∴|CD|=3,|AO|=1,B到x轴的距离为2.
∵AO⊥CD,
∴△ACD的面积为|AO|•|CD|=×1×3=12 ,
△CBD的面积为×B到x轴的距离×CD=×2×3=3 ,
∴△ABC的面积=△ACD的面积-△CBD的面积=3.
点睛:本题考查的是一次函数图象的性质,以及待定系数法确定函数解析式,类似的题一定要注意数形结合.
16、证明见解析
【解析】
试题分析:由CA平分∠BCD,AE⊥BC于E,AF⊥CD,可得AE=AF,再由HL判定Rt△AEB≌Rt△AFD,即可得出结论.
试题解析:∵CA平分∠BCD,AE⊥BC,AF⊥CD,∴AE=AF.
在Rt△ABE和Rt△ADF中,∵
∴△ABE≌△ADF(HL).
17、甲、乙两种树苗各购买5000、2000株;甲种树苗至多购买2800株;最少费用为 元.
【解析】
列方程求解即可;
根据题意,甲乙两种树苗的存货量大于等于树苗总量的列出不等式;
用x表示购买树苗的总费用,根据一次函数增减性讨论最小值.
【详解】
设购买甲种树苗x株,则购买乙种树苗株,
由题意得:
解得,则
答:甲、乙两种树苗各购买5000、2000株;
根据题意得:
解得
则甲种树苗至多购买2800株
设购买树苗的费用为W,
根据题意得:
随x的增大而减小
当时,
本题为一次函数实际应用问题,综合考察一元一次方程、一元一次不等式及一次函数的增减性.
18、(1)证明见解析(2)∠E=2∠BDE
【解析】
(1)由四边形ABCD是平行四边形,EC=BC,易证得四边形ACED是平行四边形,又由AC⊥AD,即可证得四边形ACED是矩形;
(2)根据矩形的性质得∠E=∠DAC=90°,可证得DA=AF,由等腰三角形的性质可得∠ADF=45°,则∠BDE=45°,可得出∠E=2∠BDE.
【详解】
(1)证明:因为ABCD是平行边形,
∴AD=BC,AD∥BC,
∵BC=CE,点E在BC的延长线上,
∴AD=EC,AD∥EC,
∴四边形ACED为平行四边形,
∵AC⊥AD,
∴平行四边形ACED为矩形
(2)∠E=2∠BDE
理由:∵平行四边形ABCD中,AC=2AF,
又∵AC=2AD,
∴AD=AF,
∴∠ADF=∠AFD,
∵AC∥ED,
∴∠BDE=∠BFC,
∵∠BFC=∠AFD,
∴∠BDE=∠ADF=45°,
∴∠E=2∠BDE
此题考查了矩形的判定与性质.熟悉矩形的判定和性质是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、7
【解析】
试题分析:如图,过点A做BC边上高,所以EP AM,所以∆BFP~∆BAM,∆CAM~CEP,因为AF=2,BF=3,AB=AC=5,所以, BM=CM,所以 ,因此CE=7
20、x≤1
【解析】
首先把P(m,3)代入y=x+1可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.
【详解】
解:把P(m,3)代入y=x+1得:m=1,
则P(1,3),
根据图象可得不等式x+1≤kx+b的解集是x≤1.
故答案为:x≤1.
本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
21、1
【解析】
本题根据一元二次方程的根的定义、一元二次方程的定义求解.
【详解】
∵x=3是方程的根,由一元二次方程的根的定义,可得32-3k-6=0,解此方程得到k=1.
本题逆用一元二次方程解的定义易得出k的值.
22、8.
【解析】
由作法得AE平分∠BAD,AB=AF,所以∠1=∠2,再证明AF=BE,则可判断四边形AFEB为平行四边形,于是利用AB=AF可判断四边形ABEF是菱形;根据菱形的性质得AG=EG,BF⊥AE,求出BF和AG的长,即可得出结果.
【详解】
由作法得AE平分∠BAD,AB=AF,
则∠1=∠2,
∵四边形ABCD为平行四边形,
∴BE∥AF,∠BAF=∠C=60°,
∴∠2=∠BEA,
∴∠1=∠BEA=30°,
∴BA=BE,
∴AF=BE,
∴四边形AFEB为平行四边形,△ABF是等边三角形,
而AB=AF,
∴四边形ABEF是菱形;
∴BF⊥AE,AG=EG,
∵四边形ABEF的周长为16,
∴AF=BF=AB=4,
在Rt△ABG中,∠1=30°,
∴BG=AB=2,AG=BG=2,
∴AE=2AG=,
∴菱形ABEF的面积;
故答案为:
本题考查了基本作图、平行四边形的性质与判定、菱形的判定与性质、等边三角形的判定与性质;证明四边形ABEF是菱形是解题的关键.
23、60°
【解析】
首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.
【详解】
解:△AOB中,OA=OB,∠ABO=30°;
∴∠AOB=180°-2∠ABO=120°;
∴∠ACB=∠AOB=60°.
故选A.
本题考查圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.
二、解答题(本大题共3个小题,共30分)
24、(1)24;110°;35°;(2)见解析.
【解析】
(1)由菱形的性质可求解;
(2)由“SAS”可得△DCE≌△BCE,可得∠CDP=∠CBE,由平行线的性质可得∠CDP=∠APD=∠CBE.
【详解】
解:(1)∵四边形ABCD是菱形
∴AB=BC=CD=AD=6,∠DAB+∠ADC=180°,
∠DCA=∠DCB=∠DAB=35°
∴菱形ABCD的周长=4×6=24,
∠ADC=180°-70°=110°,
故答案为:24,110°,35°
(2)证明:∵菱形ABCD
∴CD//AB,CD=CB,CA平分∠BCD
∴∠CDE=∠APD,∠ACD=∠ACB
∵CD=CB,∠BCE=∠DCE,CE=CE
∴△CBE≌△CDE(SAS)
∴∠CBE=∠CDE
∴∠CBE=∠APD.
本题考查了菱形的性质,全等三角形判定和性质,熟练运用菱形的性质是本题的关键.
25、见解析
【解析】
求出EC=EB,∠ECA=∠EBA=90°,∠CAE=∠BAE,根据AAS推出△CAE≌△BAE,根据全等三角形的性质得出AC=AB,根据SAS推出△CAD≌△BAD即可.
【详解】
证明:∵AE是∠BAC的角平分线,EB⊥AB,EC⊥AC,
∴EC=EB,∠ECA=∠EBA=90°,∠CAE=∠BAE,
在△CAE和△BAE中
,
∴△CAE≌△BAE,
∴AC=AB,
在△CAD和△BAD中
,
∴△CAD≌△BAD,
∴BD=CD.
考查了全等三角形的性质和判定的应用,注意:全等是三角形的对应边相等,对应角相等.
26、
【解析】
首先根据矩形的性质可得,易证是等边三角形,即可得OA的长度,可得AC的长度.
【详解】
在矩形中,
.
,
.
是等边三角形.
,
.
本题考查了矩形的性质以及等边三角形的判定,掌握矩形的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
广东省惠州市惠城区培英学校2024-2025学年九年级上学期开学数学试题: 这是一份广东省惠州市惠城区培英学校2024-2025学年九年级上学期开学数学试题,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省惠州市培英学校2024-2025学年九年级上学期+开学数学模拟试题: 这是一份广东省惠州市培英学校2024-2025学年九年级上学期+开学数学模拟试题,共12页。
2023-2024学年广东省惠州市英华学校数学九上期末质量跟踪监视试题含答案: 这是一份2023-2024学年广东省惠州市英华学校数学九上期末质量跟踪监视试题含答案,共7页。试卷主要包含了答题时请按要求用笔,如果等内容,欢迎下载使用。