年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    甘肃省陇南市名校2024-2025学年数学九上开学经典试题【含答案】

    甘肃省陇南市名校2024-2025学年数学九上开学经典试题【含答案】第1页
    甘肃省陇南市名校2024-2025学年数学九上开学经典试题【含答案】第2页
    甘肃省陇南市名校2024-2025学年数学九上开学经典试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省陇南市名校2024-2025学年数学九上开学经典试题【含答案】

    展开

    这是一份甘肃省陇南市名校2024-2025学年数学九上开学经典试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)化简的结果是( )
    A.5B.-5C.±5D.25
    2、(4分)下列等式从左到右的变形,属于因式分解的是( )
    A.B.
    C.D.
    3、(4分)一次函数的图象不经过哪个象限( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、(4分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )
    A.k>B.k≥C.k>且k≠1D.k≥且k≠1
    5、(4分)如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于( )
    A.B.C.D.
    6、(4分)一次函数y=-kx+k与反比例函数y=-(k≠0)在同一坐标系中的图象可能是( )
    A.B.C.D.
    7、(4分)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=4,AB=3,则线段CE的长度是( )
    A.B.C.3D.2.8
    8、(4分)一个等腰三角形的周长为14,其一边长为4那么它的底边长为( )
    A.5B.4C.6D.4或6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=5,则BC=_____.
    10、(4分)因式分解:m2n+2mn2+n3=_____.
    11、(4分)直线与直线平行,且经过,则直线的解析式为:__________.
    12、(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为_____.
    13、(4分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:﹣(π﹣2019)0+2﹣1.
    15、(8分)如图,是的角平分线,过点作交于点,交于点.
    (1)求证:四边形为菱形;
    (2)如果,,求的度数.
    16、(8分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
    (1)请将甲校成绩统计表和图2的统计图补充完整;
    (2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
    17、(10分)已知x=+1,y=-1,求的值.
    18、(10分)某中学计划购进甲、乙两种学具,已知一件甲种学具的进价与一件乙种学具的进价的和为40元,用90元购进甲种学具的件数与用150元购进乙种学具的件数相同.
    求每件甲种、乙种学具的进价分别是多少元?
    该学校计划购进甲、乙两种学县共100件,此次进货的总资金不超过2000元,求最少购进甲种玩具多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为_________________.
    20、(4分)已知函数,当时,函数值的取值范围是_____________
    21、(4分)若是关于的方程的一个根,则方程的另一个根是_________.
    22、(4分)如图,在平行四边形ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC=________ 。
    23、(4分)数据5,5,6,6,6,7,7的众数为_____
    二、解答题(本大题共3个小题,共30分)
    24、(8分)先化简,再求值: ,其中.
    25、(10分)先阅读下列材料,再解答下列问题:
    材料:因式分解:(x+y)2+2(x+y)+1.
    解:将“x+y”看成整体,令x+y=A,则
    原式=A2+2A+1=(A+1)2.
    再将“A”还原,得原式=(x+y+1)2.
    上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:
    (1)因式分解:1+2(x-y)+(x-y)2=_______________;
    (2)因式分解:(a+b)(a+b-4)+4;
    (3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.
    26、(12分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点 坐标为.
    (1)画出关于轴对称的;
    (2)画出将绕原点逆时针旋转90°所得的;
    (3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据开平方的运算法则计算即可.
    【详解】
    解:==5,
    故选:A.
    本题考查了开平方运算,关键是掌握基本的运算法则.
    2、B
    【解析】
    根据因式分解的定义逐个判断即可.
    【详解】
    解:A、不是因式分解,故本选项不符合题意;
    B、是因式分解,故本选项符合题意;
    C、不是因式分解,故本选项不符合题意;
    D、不是因式分解,故本选项不符合题意;
    故选:B.
    本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.
    3、A
    【解析】
    根据一次函数的性质一次项系数小于0,则函数一定经过二,四象限,常数项-1<0,则一定与y轴负半轴相交,据此即可判断.
    【详解】
    解:∵k=-1<0,b=-1<0
    ∴一次函数的图象经过二、三、四象限
    一定不经过第一象限.
    故选:A.
    本题主要考查了一次函数的性质,对性质的理解一定要结合图象记忆.
    4、C
    【解析】
    根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.
    故选C
    本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    5、D
    【解析】
    连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.
    【详解】
    解:如图,连接BF,
    在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,
    ∠ABC=180°-∠BAD=180°-80°=100°,
    ∵EF是线段AB的垂直平分线, ∴AF=BF,∠ABF=∠BAC=40°,
    ∴∠CBF=∠ABC-∠ABF=100°-40°=60°,
    ∵在△BCF和△DCF中,

    ∴△BCF≌△DCF(SAS),
    ∴∠CDF=∠CBF=60°,
    故选:D.
    本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.
    6、C
    【解析】
    根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.
    【详解】
    解:A、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误;
    B、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误;
    C、∵由反比例函数的图象在二、四象限可知,-k<0,∴k>0,∴一次函数y=-kx+k的图象经过一、二、四象限,故本选项正确;
    D、∵由反比例函数的图象在一、三象限可知,-k>0,∴k<0,∴一次函数y=-kx+k的图象经过一、三、四象限,故本选项错误.
    故选C.
    本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.
    7、B
    【解析】
    由于AE是折痕,可得到AB=AF,BE=EF,设出未知数.在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
    【详解】
    设BE=x,
    ∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,
    Rt△ABC中,AC==5,∴Rt△EFC中,FC=5﹣3=2,EC=4﹣x,∴(4﹣x)2=x2+22,
    解得:x=.
    所以CE=4﹣.
    故选B.
    本题考查了折叠问题、勾股定理和矩形的性质;解题中,找准相等的量是正确解答题目的关键.
    8、D
    【解析】
    分为两种情况:①4是等腰三角形的底边;②4是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析.
    【详解】
    解:①当4是等腰三角形的底边时,则其腰长为=5,能构成三角形,
    ②当4是等腰三角形的腰时,则其底边为14-4×2=6,能构成三角形,
    综上,该三角形的底边长为4或6.
    故选:D.
    本题考查了等腰三角形的性质及三角形三边关系,注意分类讨论思想在解题中的应用.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、5;
    【解析】
    根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,利用勾股定理即可得出答案.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AC=BD,AC=2AO,BD=2BO,∠ABC=90°,
    ∴AO=OB,
    ∵∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴AO=AB=5,
    ∴AC=2 AO=10,
    在Rt△ABC中,由勾股定理得,
    BC=.
    故答案为:5.
    本题考查了矩形的性质及勾股定理.根据矩形的性质及∠AOB=60°得出△AOB是等边三角形是解题的关键.
    10、n(m+n)1
    【解析】
    先提公因式n,再利用完全平方公式分解因式即可.
    【详解】
    解:m1n+1mn1+n3
    =n(m1+1mn+n1)
    =n(m+n)1.
    故答案为:n(m+n)1
    此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.
    11、
    【解析】
    由直线与直线平行,可知k=1,然后把代入中即可求解.
    【详解】
    ∵直线与直线平行,
    ∴k=1,
    把代入,得
    1+b=4,
    ∴b=1,
    ∴.
    故答案为:.
    本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了一次函数图像上点的坐标满足一次函数解析式.
    12、-1<x<1.
    【解析】
    先将点P(n,﹣4)代入y=﹣x﹣1,求出n的值,再找出直线y=1x+m落在y=﹣x﹣1的下方且都在x轴下方的部分对应的自变量的取值范围即可.
    【详解】
    解:∵一次函数y=﹣x﹣1的图象过点P(n,﹣4),
    ∴﹣4=﹣n﹣1,解得n=1,
    ∴P(1,﹣4),
    又∵y=﹣x﹣1与x轴的交点是(﹣1,0),
    ∴关于x的不等式1x+m<﹣x﹣1<0的解集为﹣1<x<1.
    故答案为﹣1<x<1.
    本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.
    13、2
    【解析】
    解:∵四边形ABCD是菱形,AC=2,BD=,
    ∴∠ABO=∠CBO,AC⊥BD.
    ∵AO=1,BO=,
    ∴AB=2,
    ∴sin∠ABO==
    ∴∠ABO =30°,
    ∴∠ABC=∠BAC =60°.
    由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;
    ∵∠ABO=∠CBO,
    ∴BE=BF,
    ∴△BEF是等边三角形,
    ∴∠BEF=60°,
    ∴∠OEF=60°,
    ∴∠AEO=60°,
    ∵∠BAC =60°.
    ∴△AEO是等边三角形,,
    ∴AE=OE,
    ∴BE=AE,同理BF=FC,
    ∴EF是△ABC的中位线,
    ∴EF=AC=1,AE=OE=1.
    同理CF=OF=1,
    ∴五边形AEFCD的周长为=1+1+1+2+2=2.
    故答案为2.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    解:原式.
    本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
    15、(1)见解析;(2)
    【解析】
    (1)先根据两组对边平行得出四边形为平行四边形,再根据角度相等得出即可;
    (2)由三角形内角和计算出∠ABC的度数,再根据角平分线得出∠DBF的度数,再由(1)可得∠BDE的度数即可.
    【详解】
    (1)证明:
    ∴四边形为平行四边形
    是的角平分线
    四边形为菱形.
    (2)解:,,
    是的角平分线
    由(1)可知,
    本题考查了菱形的判定及角度的计算问题,解题的关键是熟知菱形的判定定理.
    16、(1)见解析;(2)见解析
    【解析】
    试题分析:(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数,即可得出甲校9分的人数和乙校8分的人数,从而可补全统计图;
    (2)根据把分数从小到大排列,利用中位数的定义解答,根据平均数求法得出甲的平均数.
    试题解析:(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数为:
    5÷=20(人),
    即可得出8分的人数为:20-8-4-5=3(人),
    画出图形如图:
    甲校9分的人数是:20-11-8=1(人),
    (2)甲校的平均分为=(7×11+8×0+9×1+10×8)=8.3分,
    分数从低到高,第10人与第11人的成绩都是7分,
    ∴中位数=(7+7)=7(分);
    平均分相同,乙的中位数较大,因而乙校的成绩较好.
    考点:1.扇形统计图;2.条形统计图;3.算术平均数;4.中位数.
    17、
    【解析】
    先对原代数式进行通分,然后将分子利用平方差公式 分解因式,最后再整体代入即可求值.
    【详解】


    ∴原式= .
    本题主要考查二次根式的运算,掌握平方差公式和整体代入法是解题的关键.
    18、 (1) 甲,乙两种学具分别是15元件,25元件;(2) 甲种学具最少购进50个.
    【解析】
    . (1)设甲种学具进价x元/件,则乙种学具进价为(40-x)元/件,根据一件甲种学具的进价与一件乙种学具的进价的和为40元,用90元购进甲种学具的件数与用150元购进乙种学具的件数相同可列方程求解.(2)设购进甲种学具y件,则购进乙种学具(100-y)件,根据学校决定此次进货的总资金不超过2000元,可列出不等式求解;
    【详解】
    设甲种学具进价x元件,则乙种学具进价为元件,
    可得:
    解得:,
    经检验是原方程的解.
    故.
    答:甲,乙两种学具分别是15元件,25元件;
    设购进甲种学具y件,则购进乙种学具件,
    解得:.
    答:甲种学具最少购进50个;
    本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,列不等式解方案设计问题的运用,正确不等关系是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (2,-1)
    【解析】
    可先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.
    【详解】
    ∵M到x轴的距离为1,到y轴的距离为2,
    ∴M纵坐标可能为±1,横坐标可能为±2,
    ∵点M在第四象限,
    ∴M坐标为(2,-1).
    故答案为:(2,-1).
    本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.
    20、
    【解析】
    依据k的值得到一次函数的增减性,然后结合自变量的取值范围,得到函数值的取值范围即可.
    【详解】
    ∵函数y=−3x+7中,k=−3<0,
    ∴y随着x的增大而减小,
    当x=2时,y=−3×2+7=1,
    ∴当x>2时,y<1,
    故答案为:y<1.
    本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    21、
    【解析】
    设另一个根为y,利用两根之和,即可解决问题.
    【详解】
    解:设方程的另一个根为y,
    则y+ =4 ,
    解得y=,
    即方程的另一个根为,
    故答案为:.
    题考查根与系数的关系、一元二次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    22、
    【解析】
    证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.
    【详解】
    四边形ABCD为平行四边形,CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°
    AC=CD=2,∠ACD=90°
    △ACD为等腰直角三角形
    ∴BC=AD==.
    故答案是:.
    考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.
    23、6
    【解析】
    根据众数的定义可得结论.
    【详解】
    解:数据5,5,6,6,6,7,7,其中数字5出现2次,数字6出现3次,数字7出现2次,所以众数为6.
    故答案为:6
    本题主要考查众数的定义,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    根据分式的运算法则即可进行化简求值.
    【详解】
    原式===
    当x=时,原式= =
    此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
    25、 (1)(x-y+1)2;(2)见解析;(3)见解析.
    【解析】
    分析:(1)把(x-y)看作一个整体,直接利用完全平方公式因式分解即可;(2)令A=a+b,带入后因式分解即可将原式因式分解;(3)将原式转化为(n²+3n) [(n+1)(n+2)]+1,进一步整理为(n²+3n+1) ²,根据n为正整数,从而说明原式是整数的平方.
    本题解析:
    (1).1+2(x-y)+(x+y) ²=(x﹣y+1)2;
    (2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,
    故(a+b)(a+b﹣4)+4=(a+b﹣2)2;
    (3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1
    =(n2+3n)(n2+3n+2)+1
    =(n2+3n)2+2(n2+3n)+1
    =(n2+3n+1)2,
    ∵n为正整数,
    ∴n2+3n+1也为正整数,
    ∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.
    点睛;本题考查了因式分解的应用,解题的关键是认真审题你,理解题意,掌握整体思想解决问题.
    26、(1)见解析;(2)见解析;(3)能,图见解析;
    【解析】
    (1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
    (2)根据网格结构找出点A、B、C绕原点O按逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可;
    (3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线.
    【详解】
    (1)如图所示:
    (2)如图所示:
    (3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,如图,对称轴有2条.
    此题考查利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
    题号





    总分
    得分
    批阅人
    分数
    7分
    8分
    9分
    10分
    人数
    11
    0

    8

    相关试卷

    甘肃省陇南徽县联考2025届数学九上开学考试模拟试题【含答案】:

    这是一份甘肃省陇南徽县联考2025届数学九上开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    甘肃省广河县2024-2025学年九上数学开学经典模拟试题【含答案】:

    这是一份甘肃省广河县2024-2025学年九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省合肥市、安庆市名校2024-2025学年数学九上开学经典试题【含答案】:

    这是一份安徽省合肥市、安庆市名校2024-2025学年数学九上开学经典试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map