|试卷下载
终身会员
搜索
    上传资料 赚现金
    甘肃省徽县2024-2025学年数学九上开学监测试题【含答案】
    立即下载
    加入资料篮
    甘肃省徽县2024-2025学年数学九上开学监测试题【含答案】01
    甘肃省徽县2024-2025学年数学九上开学监测试题【含答案】02
    甘肃省徽县2024-2025学年数学九上开学监测试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省徽县2024-2025学年数学九上开学监测试题【含答案】

    展开
    这是一份甘肃省徽县2024-2025学年数学九上开学监测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在直角△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长为
    A.6B.5C.4D.3
    2、(4分)下列说法中错误的是 ( )
    A.一组对边平行且一组对角相等的四边形是平行四边形
    B.对角线互相垂直的平行四边形是正方形
    C.四个角相等的四边形是矩形
    D.每组邻边都相等的四边形是菱形
    3、(4分)已知:x1,x2,的平均数是a,x11,x12,的平均数是b,则x1,x2,的平均数是( )
    A.a+bB.C.D.
    4、(4分)下表是某校合唱团成员的年龄分布.
    对于不同的x,下列关于年龄的统计量不会发生改变的是( )
    A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差
    5、(4分)(1)中共有1个小正方体,其中一个看的见,0个看不见;(2)中共有8个小正方体,其中7个看得见,一个看不见;(3)中共有27个小正方体,其中19个看得见,8个看不见;…,则第(5)个图中,看得见的小正方体有( )个.
    A.100B.84C.64D.61
    6、(4分)用配方法解方程x2+2x﹣1=0时,配方结果正确的是( )
    A.(x+2)2=2B.(x+1)2=2C.(x+2)2=3D.(x+1)2=3
    7、(4分)如图,对折矩形纸片,使与重合,得到折痕,将纸片展平后再一次折叠, 使点落到上的点处,则的度数是( )
    A.25°B.30°C.45°D.60°
    8、(4分)已知点,、,是直线上的两点,下列判断中正确的是( )
    A.B.C.当时,D.当时,
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如果直线 y=-2x+k 与两坐标轴所围成的三角形面积是 9,则 k的值为_____.
    10、(4分)如图,点A的坐标为,点B在直线上运动则线段AB的长度的最小值是___.
    11、(4分)如图,直线 与轴交于点 ,依次作正方形 、正方形 、……正方形 ,使得点、…, 在直线 上,点 在轴上,则点 的坐标是________
    12、(4分)菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.
    13、(4分)菱形的两条对角线相交于,若,,则菱形的周长是___.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)把下列各式因式分解.
    (1)
    (2)
    15、(8分)如图,在平面直角坐标系中,点的坐标为,点在轴的正半轴上.若点,在线段上,且为某个一边与轴平行的矩形的对角线,则称这个矩形为点、的“涵矩形”.下图为点,的“涵矩形”的示意图.
    (1)点的坐标为.
    ①若点的横坐标为,点与点重合,则点、的“涵矩形”的周长为__________.
    ②若点,的“涵矩形”的周长为,点的坐标为,则点,,中,能够成为点、的“涵矩形”的顶点的是_________.
    (2)四边形是点、的“涵矩形”,点在的内部,且它是正方形.
    ①当正方形的周长为,点的横坐标为时,求点的坐标.
    ②当正方形的对角线长度为时,连结.直接写出线段的取值范围.
    16、(8分)在▱ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F.
    (1)如图①,证明:BE=BF.
    (2)如图②,若∠ADC=90°,O为AC的中点,G为EF的中点,试探究OG与AC的位置关系,并说明理由.
    (3)如图③,若∠ADC=60°,过点E作DC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EK=BF,连接CK,H为CK的中点,试探究线段OH与HA之间的数量关系,并对结论给予证明.
    17、(10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
    注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.
    (Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;
    (Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?
    18、(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.
    (1)求证:DE=CF;
    (2)求EF的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在平面直角坐标系中,中,点,若随变化的一族平行直线与(包括边界)相交,则的取值范围是______.
    20、(4分)如图所示,在菱形中,对角线与相交于点.OE⊥AB,垂足为,若,则的大小为____________.
    21、(4分)甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是: ,则射击成绩较稳定的是________(选填“甲”或“乙”).
    22、(4分)若某组数据的方差计算公式是S2=[(7-)+(4-)2+(3-)2+(6-)2],则公式中=______.
    23、(4分)勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”.中国是发现和研究勾股定理最古老的国家之一.中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD是由4个全等的直角三角形再加上中间的那个小正方形EFGH组成的.若小正方形的边长是1,每个直角三角形的短的直角边长是3,则大正方形ABCD的面积是_____.

    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1.在边长为10的正方形中,点在边上移动(点不与点,重合),的垂直平分线分别交,于点,,将正方形沿所在直线折叠,则点的对应点为点,点落在点处,与交于点,

    (1)若,求的长;
    (2)随着点在边上位置的变化,的度数是否发生变化?若变化,请说明理由;若不变,请求出的度数;
    (3)随着点在边上位置的变化,点在边上位置也发生变化,若点恰好为的中点(如图2),求的长.
    25、(10分)如图,已知□ABCD.
    (1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC.(用尺规作图法,保留作图痕迹,不要求写作法);
    (2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD ≌ △EFC.
    26、(12分)如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.
    (1)求证:四边形是菱形;
    (2)若,,求的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    设,由翻折的性质可知,则,在中利用勾股定理列方程求解即可.
    【详解】
    解:设,由翻折的性质可知,则.
    是BC的中点,

    在中,由勾股定理得:,即,
    解得:.

    故选:B.
    本题主要考查的是翻折的性质、勾股定理的应用,由翻折的性质得到,,从而列出关于x的方程是解题的关键.
    2、A
    【解析】
    根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.
    【详解】
    A、一组对边平行的四边形是平行四边形,说法错误,有可能是梯形,应该是一组对边平行且相等的四边形是平行四边形;
    B、对角线互相垂直且相等的平行四边形是正方形,此说法正确;
    C、根据四边形的内角和为360°,可得四个内角都相等的四边形是矩形,故正确;
    D、四条边都相等的四边形是菱形,说法正确.
    故选A.
    本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.
    3、D
    【解析】
    根据平均数及加权平均数的定义解答即可.
    【详解】
    ∵x1,x2,的平均数是a,x11,x12,的平均数是b,
    ∴x1,x2,的平均数是:.
    故选D.
    本题考查了平均数及加权平均数的求法,熟练运用平均数及加权平均数的定义求解是解决问题的关键.
    4、A
    【解析】
    由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
    【详解】
    由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.
    本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
    5、D
    【解析】
    根据前3个能看到的小正方体的数量找到规律,利用规律即可解题.
    【详解】
    (1)中共有1个小正方体,其中一个看的见,0个看不见,即 ;
    (2)中共有8个小正方体,其中7个看得见,一个看不见,即;
    (3)中共有27个小正方体,其中19个看得见,8个看不见,即;
    ……
    第(5)个图中,看得见的小正方体有即个;
    故选:D.
    本题主为图形规律类试题,找到规律是解题的关键.
    6、B
    【解析】
    把常数项移到方程右边,再把方程两边加上1,然后把方程作边写成完全平方形式即可.
    【详解】
    解:∵x1+1x﹣1=0,
    ∴x1+1x+1=1,
    ∴(x+1)1=1.
    故选:B.
    本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
    7、B
    【解析】
    由折叠的性质可得AM=DM=AD,AD⊥MN,AD=AF,可得AF=2AM,由含30度直角三角形性质可得∠MFA=30°,即可求解.
    【详解】
    解:∵对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,
    ∴AM=DM=AD,AD⊥MN,
    ∴MN∥AB
    由折叠的性质可得:AD=AF,
    ∴AF=2AM
    在直角三角形AFM中,有
    ∴∠MFA=30°
    ∵MN∥AB
    ∴∠FAB=∠MFA=30°,
    故选择:B.
    本题考查了翻折变换,含30度直角三角形的性质,平行线的性质,证明AF=2AM是本题的关键.
    8、D
    【解析】
    根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.
    【详解】
    解:一次函数上的点随的增大而减小,
    又点,、,是直线上的两点,
    若,则,
    故选:.
    本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、±1.
    【解析】
    试题分析:当x=0时,y=k;当y=0时,,∴直线与两坐标轴的交点坐标为A(0,k),B(,0),∴S△AOB=,∴k=±1.故答案为±1.
    考点:一次函数综合题.
    10、
    【解析】
    当线段AB最短时,直线AB与直线垂直,根据勾股定理求得AB的最短长度.
    【详解】
    解:当线段AB最短时,直线AB与直线垂直,
    过点A作直线l,
    因为直线是一、三象限的角平分线,
    所以,
    所以,
    所以,
    ,即,
    所以.
    故答案是:.
    考查了垂线段最短的性质,一次函数图象上点的坐标特征,勾股定理的应用,熟知垂线段最短是解题的关键.
    11、(22019-1,22018)
    【解析】
    先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n-1,2n-1),据此即可求解点B2019的坐标.
    【详解】
    解:∵令x=0,则y=1,
    ∴A1(0,1),
    ∴OA1=1.
    ∵四边形A1B1C1O是正方形,
    ∴A1B1=1,
    ∴B1(1,1).
    ∵当x=1时,y=1+1=2,
    ∴B2(3,2);
    同理可得,B3(7,4);
    ∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,
    ∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,
    ∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,
    ∴Bn的纵坐标是:2n-1,横坐标是:2n-1,
    则Bn(2n-1,2n-1),
    ∴点B2019的坐标是(22019-1,22018).
    故答案为:(22019-1,22018).
    本题考查一次函数图象上点的坐标特征、正方形的性质和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题关键.
    12、1
    【解析】
    根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
    【详解】
    解:如图,根据题意得AO=×8=4,BO=×6=3,
    ∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD.
    ∴△AOB是直角三角形.
    ∴.
    ∴此菱形的周长为:5×4=1
    故答案为:1.
    13、
    【解析】
    根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.
    【详解】
    ∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,
    ∴BO=OD=3,AO=OC=4,
    ∴AB==5,
    故菱形的周长为1,
    故答案为:1.
    本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)
    【解析】
    (1)先提取,再利用完全平方公式即可求解;
    (2)先化简,再利用完全平方公式和平方差公式即可求解.
    【详解】
    解:(1)原式
    (2)原式

    此题主要考查因式分解,解题的关键是熟知因式分解的方法.
    15、(1)①. ②;(2)①点的坐标为或.②.
    【解析】
    (1)①利用A、B的坐标求出直线AB的解析式,再将P点横坐标代入,计算即可得点、的“新矩形”的周长;②由直线AB的解析式判定是否经过E、F、G三点,发现只经过了F(1,2),能够成为点、的“涵矩形”的顶点的是F(1,2)
    (2)①①根据正方形的性质可得出∠ABO=45°,结合点A的坐标可得出点B的坐标及直线AB的函数表达式,由的横坐标为,可得出点P的坐标,再由正方形的周长可得出点Q的坐标,进而可得出点Q的坐标;②由正方形的对角线长度为,可得正方形的边长为1,由直线AB的解析式y=-x+6可知M点的运动轨迹是直线y=-x+5,由点在的内部,x的取值范围是0【详解】
    (1)①解:由A(0,6),B(3,0)可得直线AB的解析式为:y=-2x+6,
    ∵P点横坐标是
    ∴当x=时,y=3
    ∴P(,3).
    ∵ 点与点重合,
    ∴Q(3,0)
    ∴点、的“涵矩形”的宽为:3-=,长为3-0=3
    ∴点、的“涵矩形”的周长为:
    故答案为9
    ②.由①可得直线AB的解析式为:y=-2x+6可设Q(a,-2a+6),则成为点、的“涵矩形”的顶点且在AOB内部的一点坐标为M(1,-2a+6)
    ∴PM=4-(-2a+6)=2a-2,MQ=a-1
    ∵点,的“涵矩形”的周长为
    ∴PM+MQ=3
    ∴2a-2+a-1=3
    解得:a=2
    ∴M(1,2)
    故答案为F(1,2),只写或也可以.
    (2)①点、的“涵矩形”是正方形,

    点的坐标为,
    点的坐标为 ,
    直线的函数表达式为.
    点的横坐标为,
    点的坐标为.
    正方形的周长为,
    点的横坐标为或,
    点的坐标为或.
    ②∵正方形的对角线长度为,
    ∴可得正方形的边长为1,
    因为直线AB的解析式y=-x+6可设M点的运动轨迹是直线y=-x+b,且过(0,5)
    故M点的运动轨迹是直线y=-x+5
    ∵点在的内部,x的取值范围是0∴当M落在OB或者OA边上时,OM取得最大值,此时OM=5,由于点在的内部,
    ∴OM<5,
    当OM⊥直线y=-x+5时,OM取得最小值,此时OM= ,
    ∴OM的取值范围..
    故答案为
    本题考查了新型定义题型,矩形、正方形、一次函数、线段最值等问题,难度较高,审清题意,会综合运用矩形、正方形、一次函数以及最值的求法,是解题的关键.
    16、(1)详见解析;(2)GO⊥AC;(3)AH=OH
    【解析】
    (1)根据平行线的性质得出∠E=∠ADF,∠EFB=∠EDC,再利用ED平分∠ADC,即可解答
    (2)连接BG,AG,根据题意得出四边形ABCD是矩形,再利用矩形的性质,证明△ABG≌△CEG,即可解答
    (3)连接AK,BK,FK,先得出四边形BFKE是菱形,,再利用菱形的性质证明△KBE,△KBF都是等边三角形,再利用等边三角形的性质得出△ABK≌△CEK,最后利用三角函数即可解答
    【详解】
    (1)证明:如图①中,因为四边形ABCD为平行四边形,
    所以,AD∥EC,AB∥CD,
    所以,∠E=∠ADF,∠EFB=∠EDC,
    因为ED平分∠ADC,
    所以,∠ADF=∠EDC,
    所以,∠E=∠EFB,
    所以,BE=BF
    (2)解:如图⊙中,结论:GO⊥AC
    连接BG,AG
    ∵四边形ABCD是平行四边形,∠ADC=90°,
    四边形ABCD是矩形,
    ∠ABC=∠ABE=90°,
    由(1)可知:BE=BF,
    ∵∠EBF=90°,EG=FG,
    ∴∠E=45°,∠GBF=∠GBE=45°,BG=GE=GF,
    ∵∠DCE=90°
    ∴∠E=∠EDC=45°,
    ∴DC=CE=BA,
    ∵∠ABG=∠E=45°,AB=EC,BG=EG,
    ∴△ABG≌△CEG(SAS),
    ∵GA=GC
    ∴AO=OC.
    ∴GO⊥AC
    (3)解:如图⊙中,连接AK,BK,FK
    ∵BF=EK,BF∥EK,
    ∴四边形BFKE是平行四边形,
    ∵BF=BE,
    ∴四边形BFKE是菱形,
    ∵边形ABCD是平行四边形,
    ∴∠ADC=∠ABC=60°,∠DCB=∠DAB=120°
    ∴∠EBF=120°,
    ∴∠KBE=∠KBF=60°
    BF=BE=FK=EK,
    ∴△KBE,△KBF都是等边三角形,
    ∴∠ABK=∠CEK=60°,∠FEB=∠FEK=30
    ∴∠CDE=∠CED=30°
    ∴CD=CE=BA,
    ∵BK=EK,
    ∴△ABK≌△CEK(SAS)
    ∴AK=CK,∠AKB=∠CKB
    ∴∠AKC=∠BKE=60°
    ∴△ACK是等边三角形
    ∵OA=OC,CH=HK
    ∴AK=2OH,AH⊥CK,
    ∴AH=AK·cs30°= AK
    ∴AH= OH.
    此题考查平行四边形的性质,矩形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,解题关键在于作辅助线
    17、 (1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
    【解析】
    (1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据A
    B两种车至少要能坐1441人即可得取x的取值范围;
    (2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.
    【详解】
    (1)由题意得y=380x+280(62-x)=100x+17360,
    ∵30x+20(62-x)≥1441,
    ∴x≥20.1,∴21≤x≤62且x为整数;
    (2)由题意得100x+17360≤21940,
    解得x≤45.8,∴21≤x≤45且x为整数,
    ∴共有25种租车方案,
    ∵k=100>0,∴y随x的增大而增大,
    当x=21时,y有最小值, y最小=100×21+17360=19460,
    故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
    本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.
    18、见解析;
    【解析】
    试题分析:(1)直接利用三角形中位线定理得出DEBC,进而得出DE=FC;
    (2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长
    试题解析:(1)证明:∵D、E分别为AB、AC的中点, ∴DEBC,
    ∵延长BC至点F,使CF=BC, ∴DEFC, 即DE=CF;
    (2)解:∵DEFC, ∴四边形DEFC是平行四边形, ∴DC=EF,
    ∵D为AB的中点,等边△ABC的边长是2, ∴AD=BD=1,CD⊥AB,BC=2, ∴DC=EF=.
    考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据题意,可知点B到直线的距离最短,点C到直线的距离最长,求出两个临界点b的值,即可得到取值范围.
    【详解】
    解:根据题意,点,
    ∵直线与(包括边界)相交,
    ∴点B到直线的距离了最短,点C到直线的距离最长,
    当直线经过点B时,有

    ∴;
    当直线经过点C时,有

    ∴;
    ∴的取值范围是:.
    本题考查了一次函数的图像和性质,以及一次函数的平移问题,解题的关键是掌握一次函数的性质,一次函数的平移,正确选出临界点进行解题.
    20、65°
    【解析】
    先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.
    【详解】
    在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO∠BAD50°=25°.
    ∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.
    故答案为65°.
    本题考查了菱形的邻角互补,每一条对角线平分一组对角的性质,直角三角形两锐角互余的性质,熟练掌握性质是解题的关键.
    21、甲
    【解析】
    根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    解:因为甲的方差最小,所以射击成绩较稳定的是甲;
    故答案为:甲
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    22、1.
    【解析】
    根据代表的是平均数,利用平均数的公式即可得出答案.
    【详解】
    由题意,可得.
    故答案为:1.
    本题主要考查平均数,掌握平均数的公式是解题的关键.
    23、25
    【解析】
    由BF=BE+EF结合“小正方形的边长是1,每个直角三角形的短的直角边长是3”即可得出直角三角形较长直角边的长度,结合三角形的面积公式以及正方形面积公式即可得出结论.
    【详解】
    ∵EF=1,BE=3,
    ∴BF=BE+EF=4,
    ∴S正方形ABCD=4⋅S△BCF+S正方形EFGH=4× ×4×3+1×1=25.
    故答案为:25.
    此题考查勾股定理的证明,解题关键在于掌握勾股定理的应用
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)不变,45°;(3) .
    【解析】
    (1)由翻折可知:EB=EM,设EB=EM=x,在Rt△AEM中,根据EM2=AM2+AE2,构建方程即可解决问题.
    (2)如图1-1中,作BH⊥MN于H.利用全等三角形的性质证明∠ABM=∠MBH,∠CBP=∠HBP,即可解决问题.
    (3)如图2中,作FG⊥AB于G.则四边形BCFG是矩形,FG=BC,CF=BG.设AM=x,在Rt△DPM中,利用勾股定理构建方程求出x,再在Rt△AEM中,利用勾股定理求出BE,EM,AE,再证明AM=EG即可解决问题.
    【详解】
    (1)如图1中,
    ∵四边形ABCD是正方形,
    ∴∠A=90°,AB=AD=10,
    由翻折可知:EB=EM,设EB=EM=x,
    在Rt△AEM中,∵EM2=AM2+AE2,
    ∴x2=42+(10-x)2,
    ∴x=.
    ∴BE=.
    (2)如图1-1中,作BH⊥MN于H.
    ∵EB=EM,
    ∴∠EBM=∠EMB,
    ∵∠EMN=∠EBC=90°,
    ∴∠NMB=∠MBC,
    ∵AD∥BC,
    ∴∠AMB=∠MBC,
    ∴∠AMB=∠BMN,
    ∵BA⊥MA,BH⊥MN,
    ∴BA=BH,
    ∵∠A=∠BHM=90°,BM=BM,BA=BH,
    ∴Rt△BAM≌△BHM(HL),
    ∴∠ABM=∠MBH,
    同法可证:∠CBP=∠HBP,
    ∵∠ABC=90°,
    ∴∠MBP=∠MBH+∠PBH=∠ABH+∠CBH=∠ABC=45°.
    ∴∠PBM=45°.
    (3)如图2中,作FG⊥AB于G.则四边形BCFG是矩形,FG=BC,CF=BG.设AM=x,
    ∵PC=PD=5,
    ∴PM+x=5,DM=10-x,
    在Rt△PDM中,(x+5)2=(10-x)2+25,
    ∴x=,
    ∴AM=,
    设EB=EM=m,
    在Rt△AEM中,则有m2=(10-m)2+()2,
    ∴m= ,
    ∴AE=10-,
    ∵AM⊥EF,
    ∴∠ABM+∠GEF=90°,∠GEF+∠EFG=90°,
    ∴∠ABM=∠EFG,
    ∵FG=BC=AB,∠A=∠FGE=90°,
    ∴△BAM≌△FGE(AAS),
    ∴EG=AM= ,
    ∴CF=BG=AB-AE-EG=10- .
    此题考查四边形综合题、正方形的性质、全等三角形的判定和性质、勾股定理,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.
    25、(1)作图解析;(2)证明见解析.
    【解析】
    (1)根据题目要求画出图形即可.
    (2)首先根据平行四边形的性质可得AD∥BC,AD=BC,进而得到AD=CE,∠DAF=∠CEF,进而可利用AAS证明△AFD≌△EFC.
    【详解】
    (1)如图所示:
    (2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC
    ∵BC=CE,
    ∴AD=CE
    ∵AD∥BC,
    ∴∠DAF=∠CEF
    在△ADF和△ECF中,
    ∵ ,
    ∴△ADF≌△ECF(AAS)
    本题主要考查尺规作图以及全等三角形的证明、平行四边形的性质,熟练掌握全等三角形证明方法是解题关键.
    26、(1)证明见解析;(2)2.
    【解析】
    分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.
    (2)根据菱形的性质和勾股定理求出.根据直角三角形斜边的中线等于斜边的一半即可求解.
    详解:(1)证明:∵∥,

    ∵平分
    ∴,


    又∵

    又∵∥,
    ∴四边形是平行四边形
    又∵
    ∴是菱形
    (2)解:∵四边形是菱形,对角线、交于点.
    ∴.,,
    ∴.
    在中,.
    ∴.
    ∵,
    ∴.
    在中,.为中点.
    ∴.
    点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.
    题号





    总分
    得分
    批阅人
    年龄/岁
    13
    14
    15
    16
    频数
    5
    15
    x
    型号
    载客量
    租金单价
    A
    30人/辆
    380元/辆
    B
    20人/辆
    280元/辆
    相关试卷

    甘肃省兰州市第九中学2024-2025学年数学九上开学学业质量监测试题【含答案】: 这是一份甘肃省兰州市第九中学2024-2025学年数学九上开学学业质量监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    甘肃省广河县2024-2025学年九上数学开学经典模拟试题【含答案】: 这是一份甘肃省广河县2024-2025学年九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年甘肃省庆阳市九上数学开学监测试题【含答案】: 这是一份2024-2025学年甘肃省庆阳市九上数学开学监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map