福建省龙岩市金丰片区2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)二次根式中,x的取值范围在数轴上表示正确的是( )
A.B.
C.D.
2、(4分)如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中点,则CM的长为( )
A.B.2C.D.3
3、(4分)用反证法证明“在中,,则是锐角”,应先假设( )
A.在中,一定是直角B.在中,是直角或钝角
C.在中,是钝角D.在中,可能是锐角
4、(4分)如图,在中,是上一点,,,垂足为,是的中点,若,则的长度为( )
A.36B.18C.9D.5
5、(4分)正比例函数的图象向上平移1个单位后得到的函数解析式为( )
A.B.C.D.
6、(4分)ABCD是一块正方形场地,小华和小萌在AB上取一点E,测量得,,这块场地的对角线长是( )
A.10B.30C.40D.50
7、(4分)如图,点A是反比例函数图像上一点,AC⊥x轴于点C,与反比例函数图像交于点B,AB=2BC,连接OA、OB,若△OAB的面积为2,则m+n的值( )
A.-3B.-4C.-6D.-8
8、(4分)二次根式的值是( )
A.﹣3B.3或﹣3C.9D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当二次根式的值最小时,=______.
10、(4分)如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.
11、(4分)如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
12、(4分)已知不等式的解集为﹣1<x<2,则( a +1)(b﹣1)的值为____.
13、(4分)从沿北偏东的方向行驶到,再从沿南偏西方向行驶到,则______.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:+--
15、(8分)某中学举行了一次“世博”知识竞赛.赛后抽取部分参赛同学的成绩进行整理,并制作成图表如下:
请根据以上图表提供的信息,解答下列问题:
(1)写出表格中m和n所表示的数:m= ,n= ,并补全频数分布直方图;
(2)抽取部分参赛同学的成绩的中位数落在第 组;
(3)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?
16、(8分)已知,,求.
17、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)请直接写出不等式kx+b﹣3x>0的解集.
(3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.
18、(10分)在中,,是的中点,是的中点,过点作交的延长线于点,连接.
(1)求证:.
(2)求证:四边形是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)_______.
20、(4分)已知直角梯形ABCD中,AD∥BC,∠A=90°,AB=,CD=5,那么∠D的度数是_____.
21、(4分)比较大小:(填“>”或“<”或“=”).
22、(4分)如图,在四边形ABCD中,AD∥BC,AD=12 cm,BC=8 cm,P,Q分别从A,C同时出发,P以1 cm/s的速度由A向D运动,Q以2 cm/s的速度由C出发向B运动,__________秒后四边形ABQP是平行四边形.
23、(4分)如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠1.
(1)求证:四边形ABCD是矩形;(1)若∠BOC=110°,AB=4cm,求四边形ABCD的面积.
25、(10分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(−2,−2),B(−4,−1),C(−4,−4).
(1)作出ABC关于原点O成中心对称的A1B1C1.
(2)作出点A关于x轴的对称点A'若把点A'向右平移a个单位长度后落在A1B1C1的内部(不包括顶点和边界),求a的取值范围.
26、(12分)如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=BE=4,AE=3,求CD的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
【详解】
解:根据题意得3+x≥0,
解得:x≥﹣3,
故x的取值范围在数轴上表示正确的是.
故选:D.
本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义.
2、C
【解析】
延长BC 到E 使BE=AD,利用中点的性质得到CM= DE=AB,再利用勾股定理进行计算即可解答.
【详解】
解:延长BC 到E 使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,
∵BC=3,AD=1,
∴C是BE的中点,
∵M是BD的中点,
∴CM= DE=AB,
∵AC⊥BC,
∴AB==,
∴CM= ,
故选:C.
此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.
3、B
【解析】
假设命题的结论不成立或假设命题的结论的反面成立,然后推出矛盾,说明假设错误,结论成立.
【详解】
解:用反证法证明命题“在中,,则是锐角”时,应先假设在中,是直角或钝角.
故选:B.
本题考查反证法,记住反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.
4、C
【解析】
根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.
【详解】
∵在△ACD中,∵AD=AC,AE⊥CD,
∴E为CD的中点,
又∵F是CB的中点,
∴EF为△BCD的中位线,
∴EF∥BD,EF=BD,
∵BD=18,
∴EF=9,
故选:C.
本题考查了三角形中位线定理和等腰三角形的性质.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.
5、A
【解析】
根据“上加下减”的平移原理,结合原函数解析式即可得出结论.
【详解】
根据“上加下减”的原理可得:
函数y=−2x的图象向上平移1个单位后得出的图象的函数解析式为y=−2x+1.
故选A
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
6、C
【解析】
根据勾股定理求出BC长,由正方形的性质可得对角线长.
【详解】
解:由正方形ABCD可知:
在直角三角形EBC中,根据勾股定理得:
,则,
在直角三角形ABC中,根据勾股定理得:
所以这块场地对角线长为40.
故选:C
本题考查了勾股定理,灵活应用勾股定理求线段长是解题的关键.
7、D
【解析】
由AB=2BC可得 由于△OAB的面积为2可得,
由于点A是反比例函数可得由于m<0
可求m,n的值,即可求m+n的值。
【详解】
解:∵AB=2BC
∴
∵△OAB的面积为2
∴,
∵点A是反比例函数
∴
又∵m<0
∴m=-6
同理可得:n=-2
∴m+n=-8
故答案为:D
本题考查了反比例函数与几何图形,熟练掌握反比例函数与三角形面积的关系是解题的关键.
8、D
【解析】
本题考查二次根式的化简, .
【详解】
.
故选D.
本题考查了根据二次根式的意义化简.
二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
直接利用二次根式的定义分析得出答案.
【详解】
∵二次根式的值最小,
∴,解得:,
故答案为:1.
本题主要考查了二次根式的定义,正确把握定义是解题关键.
10、60°
【解析】
根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.
【详解】
由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,
∴等腰梯形的较大内角为360°÷3=120°,
∵等腰梯形的两底平行,
∴等腰梯形的底角(指锐角)是:180°-120°=60°.
故答案是:60°.
本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.
11、③
【解析】
分析: 根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.
详解:∵BD=CD,DE=DF,
∴四边形BECF是平行四边形,
①BE⊥EC时,四边形BECF是矩形,不一定是菱形;
②AB=AC时,∵D是BC的中点,
∴AF是BC的中垂线,
∴BE=CE,
∴平行四边形BECF是菱形.
③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;
故答案是:②.
点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:
①定义;②四边相等;③对角线互相垂直平分.
12、-12
【解析】
先求出每个不等式的解集,求出不等式组的解集,根据已知不等式组的解集得出方程,求出a、b的值,代入即可求出答案.
【详解】
解:∵解不等式2x-a<1得:x<,
解不等式x-2b>3得:x>2b+3,
∴不等式组的解集是2b+3<x<a,
∵不等式组的解集为-1<x<2,
∴2b+3=-1,,
∴b=-2,a=3,
∴(a+1)(b-1)=(3+1)×(-2-1)=-12,
故答案为:-12.
本题考查了一元一次方程,一元一次不等式组的应用,解此题的关键事实能得出关于a、b的方程,题目比较好,难度适中.
13、40
【解析】
根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.
【详解】
如图,A沿北偏东60°的方向行驶到B,则∠BAC=90°-60°=30°,
B沿南偏西20°的方向行驶到C,则∠BCO=90°-20°=70°,
又∵∠ABC=∠BCO-∠BAC,∴∠ABC=70°-30°=40°.
故答案为:40°
解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.
三、解答题(本大题共5个小题,共48分)
14、2+3
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=4+3﹣﹣ =2+3
本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算,本题属于基础题型.
15、(1)m=90,n=0.3;(2)二;(3)40%.
【解析】
(1)由总数=某组频数÷频率计算出总人数,则m等于总数减去其它组的频数,再由频率之和为1计算n;
(2)由中位数的概念分析;
(3)由获奖率=莸奖人数÷总数计算.
【详解】
(1)总人数=30÷0.15=200人,
m=200﹣30﹣60﹣20=90,
n=1﹣0.15﹣0.45﹣0.1=0.3,
如图:
(2)由于总数有200人,中位数应为第100、101名的平均数,而第一组有30人,第二组有90人,故中位数落在第二组内;
(3)获奖率==40%,
答:获奖率是40%.
本题考查了利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.
16、
【解析】
由x+y=−5,xy=3,得出x<0,y<0,利用二次根式的性质化简,整体代入求得答案即可.
【详解】
∵x+y=−5,xy=3,
∴x<0,y<0,
∴===.
此题考查二次根式的化简求值,掌握二次根式的性质,渗透整体代入的思想是解决问题的关键.
17、(1)k=-1,b=4;(2)x<1;(3)点D的坐标为D(0,﹣4)或D(0,12).
【解析】
(1)用待定系数法求解;(2)kx+b>3x,结合图象求解;(3)先求点B的坐标为(4,0).设点D的坐标为(0,m),直线DB:y=-,过点C作CE∥y轴,交BD于点E,则E(1,),可得CE,S△BCD=S△CED+S△CEB== |3﹣ |×4=2|3﹣,由S△BCD=2S△BOC可求解.
【详解】
解:(1)当x=1时,y=3x=3,
∴点C的坐标为(1,3).
将A(﹣2,6)、C(1,3)代入y=kx+b,
得:
解得:;
(2)由kx+b﹣3x>0,得
kx+b>3x,
∵点C的横坐标为1,
∴x<1;
(3)由(1)直线AB:y=﹣x+4
当y=0时,有﹣x+4=0,
解得:x=4,
∴点B的坐标为(4,0).
设点D的坐标为(0,m),
∴直线DB:y=-,
过点C作CE∥y轴,交BD于点E,则E(1,),
∴CE=|3﹣ |
∴S△BCD=S△CED+S△CEB== |3﹣ |×4=2|3﹣ |.
∵S△BCD=2S△BOC,即2|3﹣ |=×4×3×2,
解得:m=﹣4或12,
∴点D的坐标为D(0,﹣4)或D(0,12).
考核知识点:一次函数的综合运用.数形结合分析问题是关键.
18、(1)见解析;(2) 见解析
【解析】
(1)根据已知条件易证,利用全等三角形的性质即可证得结论;(2)根据(1)的结论,结合已知条件证得,利用一组对边平行且相等的四边形为平行四边形,证得四边形是平行四边形,再利用直角三角形斜边的中线等于斜边的一半证得,由一组邻边相等的平行四边形为菱形即可判定四边形是菱形.
【详解】
(1)证明:如图,,
,
是直角三角形,是边上的中线,是的中点,
,,
在和中,
,
;
.
(2)由(1)知,
,
,
,
四边形是平行四边形,
,是的中点,
,
四边形是菱形.
本题考查全等三角形的判定与性质、平行四边形的判定、菱形的判定及直角三角形斜边的中线等于斜边的一半的性质,熟练运用相关知识是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
用配方法解题即可.
【详解】
故答案为:1.
本题主要考查配方法,掌握规律是解题关键.
20、60°或120°
【解析】
该题根据题意分为两种情况,首先正确画出图形,根据已知易得直角三角形DEC的直角边和斜边的长,然后利用三角函数,即可求解.
【详解】
①如图1,
过D作DE⊥BC于E,则∠DEC=∠DEB=90°,
∵AD∥BC,∠A=90°,
∴∠B=90°,
∴四边形ABED是矩形,
∴∠ADE=90°,AB=DE=,
∵CD=5,
∴sinC==,
∴∠C=60°,
∴∠EDC=30°,
∴∠ADC=90°+30°=120°;
②如图2,
此时∠D=60°,
即∠D的度数是60°或120°,
故答案为:60°或120°.
该题重点考查了三角函数的相关知识,解决该题的关键一是:能根据题意画出两种情况,二是:把该题转化为三角函数问题,从而即可求解.
21、
【解析】
试题分析:两个负数比较大小,绝对值越大的数反而越小.-3=-;-2=-,根据1812可得:--.
考点:二次根式的大小比较
22、.
【解析】
根据一组对边平行且相等的四边形是平行四边形可得当AP=BQ时,四边形ABQP是平行四边形,因此设x秒后四边形ABQP是平行四边形,进而表示出AP=xcm,CQ=2xcm,QB=(8﹣2x)cm再列方程解出x的值即可.
【详解】
解:设x秒后,四边形ABQP是平行四边形,
∵P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,
∴AP=xcm,CQ=2xcm,
∵BC=8cm,
∴QB=(8﹣2x)cm,
当AP=BQ时,四边形ABQP是平行四边形,
∴x=8﹣2x,
解得:x=.
故答案为.
此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定方法.
23、③
【解析】
分析: 根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.
详解:∵BD=CD,DE=DF,
∴四边形BECF是平行四边形,
①BE⊥EC时,四边形BECF是矩形,不一定是菱形;
②AB=AC时,∵D是BC的中点,
∴AF是BC的中垂线,
∴BE=CE,
∴平行四边形BECF是菱形.
③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;
故答案是:②.
点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:
①定义;②四边相等;③对角线互相垂直平分.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(1)
【解析】
(1)因为∠1=∠1,所以BO=CO,1BO=1CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;
(1)在△BOC中,∠BOC=110°,则∠1=∠1=30°,AC=1AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.
【详解】
(1)证明:∵∠1=∠1,
∴BO=CO,即1BO=1CO.
∵四边形ABCD是平行四边形,
∴AO=CO,BO=OD,
∴AC=1CO,BD=1BO,
∴AC=BD.
∵四边形ABCD是平行四边形,
∴四边形ABCD是矩形;
(1)在△BOC中,∵∠BOC=110°,
∴∠1=∠1=(180°-110°)÷1=30°,
∴在Rt△ABC中,AC=1AB=1×4=8(cm),
∴BC=(cm).
∴四边形ABCD的面积=4(cm1)
此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.
25、见解析
【解析】
(1)分别作出点A、B、C关于原点O成中心对称的对应点,顺次连接即可得;
(2)由点A′坐标为(-2,2)可知要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移1个单位,据此可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求;
(2)∵点A′坐标为(-2,2),
∴若要使向右平移后的A′落在△A1B1C1的内部,最少平移4个单位,最多平移1个单位,即4<a<1.
考查作图-中心对称和轴对称、平移,熟练掌握中心对称和轴对称、平移变换的性质是解题的关键.
26、 (1)详见解析;(2)
【解析】
(1)由∠EAF=∠GAC.可得∠EAG=∠DAF且AG⊥BC,AM⊥DE 可得∠ADF=∠B,且∠EAD=∠BAC可证:△ADE∽△ABC;
(2)利用相似的性质得出,AB=BE+AE=4+3=7,即可解答
【详解】
(1)证明:AG⊥BC,AF⊥DE,
∴∠AFE=∠AGC=90°,
∴∠AEF+∠EAF=90°,∠GAC+∠ACG=90°,
∵∠EAF=∠GAC,
∴∠AEF=∠ACG,
∵∠EAD=∠CAB,
∴△ADE∽△ABC;
(2)解:∵△ADE∽△ABC,
∴,
∵AD=BE=4,AE=3,
∴AB=BE+AE=4+3=7,
∴,
解得:AC= ,
∴CD=AC﹣AD=﹣4= .
此题考查三角形相似的判定与性质,解题关键在于掌握判定法则
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年福建省龙岩市永定区金丰片数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年福建省龙岩市永定区金丰片数学九年级第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年福建省龙岩市永定区金丰片九年级数学第一学期期末综合测试模拟试题含答案: 这是一份2023-2024学年福建省龙岩市永定区金丰片九年级数学第一学期期末综合测试模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
福建省龙岩市金丰片区2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案: 这是一份福建省龙岩市金丰片区2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了已知抛物线与x轴相交于点A,B,函数中,自变量的取值范围是等内容,欢迎下载使用。